US009432486B2

a2 United States Patent (10) Patent No.: US 9,432,486 B2

Luna 45) Date of Patent: Aug. 30,2016

(54) SELECTIVE DATA COMPRESSION BY A (2013.01); HO4L 67/42 (2013.01); HO4W

DISTRIBUTED TRAFFIC MANAGEMENT 4/005 (2013.01); HO4W 4/02 (2013.01); HO4W

SYSTEM TO REDUCE MOBILE DATA 4/12 (2013.01); HO4W 4/20 (2013.01)
TRAFFIC AND SIGNALING TRAFFIC (58) Field of Classification Search

. CPC ..o HO4L 67/2838; HO4L 69/04; HO4L

(71) Applicant: Seven Networks, LL.C, San Carlos, CA 20/06176; HOAL 43/50; HO4L 47/10; HO3M

(Us) 7/30; HO3M 7/3088; HO3M 7/3084; GO6F

17/30153; Y108 707/99942

(72) Inventor: Michael Luna, San Carlos, CA (US) See application file for complete search history.

(73) Assignee: (SS‘SI(;n Networks, LL.C, Marshall, TX (56) References Cited
U.S. PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 5,870,722 A * 2/1999 Albertcovveine. G06Q7§(5);2491
US.C. 154(b) by 0 days. 6351767 Bl 2/2002 Batchelder et al.
(21) Appl. No.: 14/714,257 (Continued)

(22) Filed: May 16, 2015 OTHER PUBLICATIONS

. Lo Non-Final Office action mailed Dec. 16, 2014 for U.S. Appl. No.
(65) Prior Publication Data 13/467,159.

US 2015/0249727 Al Sep. 3, 2015 (Continued)

Related U.S. Application Data Primary Examiner — Chirag R Patel
(63) Continuation of application No. 13/467,159, filed on (74) Attorney, Agent, or Firm — NK Patent Law, PLL.C
May 9, 2012, now Pat. No. 9,060,032, which is a
continuation-in-part of application No. 13/274,265, (57 ABSTRACT

filed on Oct. 14, 2011, now Pat. No. 9,021,048. Selective data compression by a distributed traffic manage-

(Continued) ment system to reduce mobile and/or signaling traffic are

disclosed. In one embodiment, the method can include, for

(51) Int. CL example: compressing an uncompressed data chunk in a data
HO4L 29/06 (2006.01) stream to be transmitted over the wireless network to
HO03M 7/30 (2006.01) generate a compressed data chunk, comparing sizes of the
GO6F 17/30 (2006.01) uncompressed data chunk with the compressed data chunk,
TI04L 29/08 (2006.01) transmitting an optimized data stream comprising of the
(Continued) uncompressed data chunk or the compressed data chunk

over the wireless network, depending on which is smaller in

(52) US. CL size. In one embedment, a header can be included in the
CPC ... HO4L 69/04 (2013.01); GO6F 17/30153 optimized data stream to indicate which of uncompressed

(2013.01); HO3M 7/30 (2013.01); HO3M data chunk and the compressed data chunk is transmitted.
7/3084 (2013.01); HO3M 7/3088 (2013.01);

HO3M 7/6017 (2013.01); HO4L 67/2828 12 Claims, 45 Drawing Sheets
-140 190 Fﬂz
4
Advertisement ImL;f:Q
Promotional content

Host
Electronic Coupons server

Corporate Email (/\/’\\ "

Personal Emait Newf\ry* Network f 185

SMS, MMS, other *\'\ 135) oL
Messeging

N
108
Portats, infranet Server
Cache
Social networks, other
services

1208

f120C

| e 1204
Promotional [

Ad Server(s) Content
Server(s)

&-Coupon
Server(s)

US 9,432,486 B2
Page 2

Related U.S. Application Data

(60) Provisional application No. 61/533,021, filed on Sep.
9, 2011, provisional application No. 61/533,007, filed
on Sep. 9, 2011, provisional application No. 61/532,
857, filed on Sep. 9, 2011, provisional application No.
61/430,828, filed on Jan. 7, 2011, provisional appli-
cation No. 61/416,033, filed on Nov. 22, 2010, pro-
visional application No. 61/416,020, filed on Nov. 22,
2010, provisional application No. 61/408,854, filed
on Nov. 1, 2010, provisional application No. 61/408,
846, filed on Nov. 1, 2010, provisional application
No. 61/408,839, filed on Nov. 1, 2010, provisional
application No. 61/408,829, filed on Nov. 1, 2010,
provisional application No. 61/408,826, filed on Now.
1, 2010, provisional application No. 61/408,820, filed
on Nov. 1, 2010, provisional application No. 61/408,
858, filed on Nov. 1, 2010.
(51) Int. CL
HO04W 4/00 (2009.01)
HO4W 4/02 (2009.01)
HO4W 4/12 (2009.01)
HO4W 4/20 (2009.01)
(56) References Cited
U.S. PATENT DOCUMENTS
6,389,422 Bl 5/2002 Doi et al.
6,871,236 B2 3/2005 Fishman et al.
7,188,214 B1* 3/2007 Kasriel GO6F 17/30902
707/E17.12
7,305,252 B2 12/2007 Britt et al.
7,398,271 Bl 7/2008 Borkovsky et al.
7,443,321 B1* 10/2008 Kaufman GO6F 17/30312
341/106
7,516,208 Bl 4/2009 Kerrison et al.
7,516,238 B2 4/2009 Key et al.
7,548,947 B2 6/2009 Kasriel et al.
7,548,969 B2 6/2009 Tripp et al.
7,613,792 B2 11/2009 Zervas et al.
7,769,805 Bl 8/2010 Barnes et al.
7,856,530 B1 12/2010 Mu
7,899,996 Bl 3/2011 Levin-Michael
7,920,590 B2* 42011 Le .coocoeviveiiiniennn HO041L 69/04
370/467
7,937,091 B2 5/2011 Roman et al.
7,953,934 B2 5/2011 Thomas et al.
7,970,860 B2 6/2011 Kline et al.
7,996,487 B2 8/2011 Snyder
8,005,891 B2 8/2011 Knowles et al.
8,024,452 B2 9/2011 Shenfield et al.
8,041,792 B2 10/2011 Donaghey et al.
8,068478 B2* 11/2011 Cruz HO04L 12/2854
370/351
8,306,581 B2* 11/2012 Mohanty HO04W 52/0216
455/127.5
8,412,932 B2 4/2013 Schneider
8,577,732 Bl 11/2013 Martin et al.
2001/0032254 Al 10/2001 Hawkins
2002/0062384 Al 5/2002 Tso
2002/0078209 Al 6/2002 Peng
2002/0174189 Al 11/2002 Peng
2002/0191596 Al 12/2002 Moyano et al.
2003/0187984 Al 10/2003 Banavar et al.
2004/0068579 Al 4/2004 Marmigere et al.
2004/0181550 Al 9/2004 Warsta et al.
2005/0071451 Al 3/2005 Key et al.
2005/0120181 Al 6/2005 Arunagirinathan et al.

2005/0154836 Al
2005/0165909 Al

7/2005
7/2005

Steely et al.
Cromer et al.

2005/0185677 Al 8/2005 Christoffersson et al.

2005/0193096 Al 9/2005 Yu et al.

2005/0210125 Al 9/2005 Li

2006/0069742 Al 3/2006 Segre

2006/0123042 Al 6/2006 Xie et al.

2006/0139674 Al* 6/2006 Oshima GO6F 3/1209
358/1.13

2006/0248040 Al 11/2006 Tolvanen et al.

2006/0277271 Al 12/2006 Morse et al.

2006/0294223 Al 12/2006 Glasgow et al.

2007/0106852 Al 5/2007 Lam et al.

2007/0156842 Al 7/2007 Vermeulen et al.

2007/0171907 Al* 7/2007 Mansutti HO04L 29/06027
370/389

2007/0179985 Al 8/2007 Knowles et al.

2007/0198734 Al 8/2007 Knowles et al.

2007/0244987 Al 10/2007 Pedersen et al.

2007/0245010 Al 10/2007 Arn et al.

2008/0085724 Al 4/2008 Cormier et al.

2008/0166999 Al 7/2008 Guedalia et al.

2008/0167019 Al 7/2008 Guedalia et al.

2008/0183800 Al 7/2008 Herzog et al.

2008/0229137 Al* 9/2008 Samuels HO4L 69/04
713/600

2008/0273498 Al 11/2008 Jalil et al.

2008/0301300 Al 12/2008 Toub

2009/0077263 Al 3/2009 Koganti et al.

2009/0187939 Al 7/2009 Lajoie

2009/0222901 Al 9/2009 Schneider

2009/0248696 Al 10/2009 Rowles et al.

2009/0282125 Al 11/2009 Jeide et al.

2009/0287750 Al 11/2009 Banavar et al.

2010/0077035 Al 3/2010 Li et al.

2010/0087167 Al 4/2010 Tsurutome et al.

2010/0131617 Al 5/2010 Osborne et al.

2010/0274857 Al 10/2010 Garza et al.

2011/0040718 Al 2/2011 Tendjoukian et al.

2011/0065424 Al 3/2011 Estevez et al.

2011/0137973 Al 6/2011 Wei et al.

2011/0179138 Al 7/2011 Van Geest et al.

2011/0208810 Al 8/2011 Li et al.

2011/0213800 Al 9/2011 Saros et al.

2011/0264791 A1 10/2011 Luu et al.

2011/0302154 A1 12/2011 Snyder

2012/0078996 Al 3/2012 Shah

2012/0254417 Al 10/2012 Luna

OTHER PUBLICATIONS

Non-Final Office action mailed Aug. 1, 2014 for U.S. Appl.

13/467,159.
Final Office action mailed Feb. 4, 2015 for U.S. Appl.
13/274,501.

Non-Final Office action mailed Jun. 11, 2014 for U.S. Appl.

13/274,501.
Final Office action mailed Jun. 28, 2012 for U.S. Appl.
13/274,501.

Non-Final Office action mailed Jan. 9, 2012 for U.S. Appl.

13/274,501.
Final Office action mailed Feb. 4, 2015 for U.S. Appl.
13/274,265.

Non-Final Office action mailed May 1, 2014 for U.S. Appl.

13/274,265.
Final Office action mailed Oct. 11, 2012 for U.S. Appl.
13/274,265.

Non-Final Office action mailed Jul. 2, 2012 for U.S. Appl.

13/274,265.

Non-Final Office action mailed Jan. 3, 2012 for U.S. Appl.

13/274,265.

* cited by examiner

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

US 9,432,486 B2

Sheet 1 of 45

Aug. 30, 2016

U.S. Patent

VI OId

Oomw\»

90}

/
/

soeLe|
o8N

01

SHOMIBN
ayoen P /\ZH
[e00 ;

(&) 1oni0s (shentog
s JUeIU0D (s)senles py
uodnop-a jguonowald
a0zt K\ vozi \.
ayorD
JOAIOS
S .
/ Gel
SIOMISN
I9AI8S
1saH

\l\

004

Jaa1ag uoneojddy
415 .\

SO0IAIBS
JOYI0 ‘SHIOMIBU [BI00S

jsueiu ‘sjeuod

Buibessap
JBYI0 ‘SN ‘SNS

jlews jrpuosiad
jews ajelodiad

suodno? 2101093

IS0 [BUOIIOWOIY
WBLUBSILBAPY

J9PIAOI TUBUOY

U.S. Patent

}
t
; Proxy Server
t

- —_— =

l
!
Optional Caching 1
]
]
§

Aug. 30, 2016 Sheet 2 of 45

110
App Server/ I

Content Provider

US 9,432,486 B2

I?ZOA

Ad Server(s)

I?ZOB

Promgotional

Network
108

Content
Server(s)

I'!ZOC

e-Coupaon

Server(s)

Host Server

Proxy Server Server Cache

135

I“mo

Netwark

106

Short Message
Service Center

112

Local
Proxy
175

FiG. 1B

Ve D14

US 9,432,486 B2

02

wslsAg 90z A 4eiRD | A/ M | | J SIS

1dy Xajiop
BupesedQ B0¢ QoBUA| JOMISN

_ _ I

Sheet 3 of 45

Aug. 30, 2016

STZ 2INPOW Aoy Jasn)

g

992
sobeuey 1eaquesp IBJ0AUOD) OipEY

GQz7 sobeuep UONOBUUOD

e

auibuz uonezRoud

q

— — 952
GE¢ J0jBIBusY i8¢ sinpop Buiyoleq | | einpow juewubiy

ajyo.id uoneayddy 10)0819 waned

§G67 esubug Buideyg oigel |

57 J010818(] JOBYSg uoneolddy

U.S. Patent

Gee
seBeuep\ uonoesurly senbay a7
BNpoy 1000)0id uonedlddy
GZe 1dV Axoid Tz Jebeuey Asijod BunoeD
GlZ — —
AX0id {2007 0ce 0ic 5374
vogeoyddy gonesy|ddy ayoen)
3{IqOIN asemy-AXold SJIGOW DiBMBUN-AXOid
7

!

0GZ 8o1Aa(eliqoi

US 9,432,486 B2

Sheet 4 of 45

Aug. 30, 2016

U.S. Patent

q¢ ‘DId

Ve
Aioysoday
afl0id
uogeoyddy

TFZ euibug uonezyoud

e siok4
Jopeleq Buiung jjod Buon

=5%4

ievoBly [BAsel) ARB(] Psuodsay

57 JojesRUDD) Bji0id uohesddy

agel
auibug Bupjors) ssuodsayisenbey

T7 J0j09leQ uleped

BEEZ 10j0919(fjod Buon

8E¢ 101018 feAslu] jod

9€e

1010818(] J0ABYSq LohBONddy

,
!
i

54

18|npayYdg asundsayy

6P oubug

UONDBIOS 10BUUOY) 10 8YIRD)

PO e
19zAeuy asuodsay

9%¢
1ezAfeuy 1sanhay

d9v¢
JOIIPTI IS

)74
Jo1Ipaid Butug

9%z suibuz voisaQ

sseusjendolddy syoen

Ve
3NPOW
J000104d

gtz eubuz
wsunsnipy
aunt

e/pz suibul
ayepdn
ajnpayss

eppz Jobeueiy 1LL

uonealddy

TVZ J0ieiausn) ainpayos {1od

¥FZ J01epiieau} ayoen 1800

(574 s
fousode oo
Aoy ayoe
wogeonddy 1sioelg
BG0Z
18414 1Hn o Al -
2 N
suibug dn-4007 syoen 98¢
ayoen

07 10jelauss) B1epRIap

GFe sebeuepy Aogod Buyoen

US 9,432,486 B2

Sheet 5 of 45

Aug. 30, 2016

U.S. Patent

IC DI

%2 gee
auIbug UONEZNLOUY 1010930(fBAISIU| li0d
VEC €EC FAX4
1010018 Jojsiag BINPOW
T i9jeueied iBRweled uonoBnXy
cre %Mwwmawm 5c7 apeq/ewly wopuey wened
cozm.wo_.aa,q 10}BIBUSC) 810 voneoyddy TS7 10109190 Lisned
TE7 10100190 J01neyag uogeayddy
T
i
V2 Moysoday
Aotod omwmo g7z sowpelag Tz Jo8jaQ w.mﬂms_
uoRey
=z Heoloay iBjeulesed ajec)/eul L lajeueled wopuey :mwwm Mmm
SNPON 555
fsanD syven T2e J010919(] sSRueted 18858 ayoeD
17¢ awbug uonnjosay lesia(ayse)
4 574 _
auibug uogoafes auibuz uolsioe(
108007 10 BYOED ssausjeudosddy ayoen _
_ _ _ _ A 21T sofpueH
lojeueied
aubuz yse je9gaq ayoen
8¥e Ive e 177
ANPOY 10201014 I0}RIBUSE) 1ojeplieau)
uoneoyddy NPBYIS 10 aysen {eoo7] J9ZiBULION Jaijijuspi
Eiz4

safieuep Aoiod Bunyoen

US 9,432,486 B2

Sheet 6 of 45

Aug. 30, 2016

U.S. Patent

ac ‘Did

Dijel]
souBUSIIBI

Jyed]
aAnoRIa)U}

Pive dJozuobaien oyjel uoyesyddy

qiye
aubuzy
uofpalaq
AueonuD sut]

[+]%4

Jopaaq whipoeg

punoibxoeg punotbsia eiye
L awbuzg
uogezalold
517 Jezuobaien ajeig uonesddy
Bz 1010818 Joneyag uojjediddy
pleg 316¢
10109}8S suibuz uoyoses

WI0g $$900Y

jpuuByD) SSP00Y

aiec
seyedg aley B1eq

elGe
Jopsles piepuelg
UORBIBUSL) SSIOUM

oGie agie TR
JoBeuep aubug ;%Swmm L
uoleadxy uonoIpald A >;u,< 1330
o8N Aoy Jesn o
GTZ anpop Apanay sasn
152 952

ainpop Buyoleq

8INpoyy rewiubyy

GG¢ euibug buideys oygesy

TGZ auwbuzg uoiosies uorenByuon YiomeeN

US 9,432,486 B2

Sheet 7 of 45

Aug. 30, 2016

U.S. Patent

VE DIA

91t
Aiojisodey
95¢ 18pincld
956¢ 76€ B86%
sabeuepy JBJ0U0D JBHOAU0D OIPON BIMBS HOMIIN
JeaguesH | | IimasLRIL] oipey i0a0j0.d
vogeoyddy
—
GEC sebeurpy UoiOsULOD GGT tabeuepy
Koo Buiyoe e -
Asoyisoday
_ uonewou| a0iAeQ
T7e 85¢
sinpoyy Bureg SNPO JolEPpHEAU| BIE(]
— Z3E 2Anpon ZVE 10108)e(
VAN ssauasemy AlLoUd ele(] MeN \\\lm|ﬂm'l/
JO20J0Id JORUOD
g Asonsodayy
90C SiNPo ssaualemy s o
TIE subug soineysg/AALOY GFE suibug EJEPERI RISIUOD
' — $8800Y oL LH PUB uoyDBLUOY
Buideys oyyell SaF Jajjonuon Axold
T
N~
gee
Janiag Axoid p
L e | 3 SWS |
ROT eoBUSIU| HOMIAN
00¢€
J9AIDG 1SOH
oig 30¢E g0c¢e CTOVAS
IBPINOL 9DIAIDS (s}ioniog {s)ioni0g UBIOD) (shione
fenieg uoneonddy ucdnon-3 JEUOROWOLd SV

US 9,432,486 B2

Sheet 8 of 45

Aug. 30, 2016

U.S. Patent

qa¢ ‘Did

19g
Jazhjeuy asuodsay
PBSE
subug weunsnipy awi}
BGE
. J019818(] 80D
IBGE map o pajepdn
suibug s1epdn einpeysg
Ggct Jebeuep 95¢

1010918(] 1S8Nbay {j0d BuocT BINPOI J020J0Id uogedyddy

egye &oE
soleimung Buiun | 1SoK suIBUT d-1007 842D

Gt
Jefeusiy apPayIs 1od

pisis €08
ouBug BULIOHUOH 9AUNOS JUBIUOD 10jeIsUsy BIEPEION

GGt
1sbeueiy Aa0d Buyoed

gee
syoe) leAeg

US 9,432,486 B2

Sheet 9 of 45

Aug. 30, 2016

U.S. Patent

JE DI

65¢ 96¢
1010819(7 JUBIOD QPO
MaN Jo parepdn j000]04d uoneolddy
8GE PSE €5¢
1abeuepy ajnpoy Bupioes | aNpop
9InpayYos flod wialjed Jeynuap JBYIPOW Jeynuap)
ISE SEE
auIbuz Butioyuo 1abeue moSomm%c. eaja(] ayoe
804N0S JUBIUOY W S bunesjeq ayoe)

GGe
sabeuepy Aogod Buiyoen

US 9,432,486 B2

Sheet 10 of 45

Aug. 30, 2016

U.S. Patent

as ont

oyjed] oyjes) T5e

SouUBUSIHEN SAIOBISIUY] oc_mc% ww_womumo
Aednuo suny
Pive Jozuobsyen oyjes)
punoiboeg punoibsio erye
— subug
UofezZHLIold
ITFE 1ezuobsien siels uoeoiddy
GTT sozhjeuy oies |
118 8.¢
ajnpopy Buiyoieg siNpo 1usbiy

§/¢ euibug buideys oiyely

US 9,432,486 B2

Sheet 11 of 45

Aug. 30, 2016

U.S. Patent

Ve ‘OI4d

$0¢
WIISAS
Bunesado

502
IdV Ixsjua)

d/1 epnjied

1 I

4/l SWS

BO¢ Soee] YUOMIBN

1op

sefeuely uoissaidwo)

_ |

GTZ SInpop ABAROY 48

{74
suIBUT LoNEZHIONY

BC7 J0}219U80) Vi
?|y0id uoneoyddy 1010830 wened

BEe 100019 JotABySq ucHBOlddy

[eiord
robeuepy uonoesue. j Jsonboy

picr4
Jabeuely 1eaguealy

992
IBORUOD Opey

To7 Jobeurspy UOROBULOY

pAst4
w.:voEmcESmm

(174
anpop Juswubly

G2 eubuy Buideyg oyjes |

8¥¢
SINPO 1000101 voeayddy

522 Idy Axoid Tz sebeuepy Aonog Bunoen
sic — — —
Axoid 18007 (/44 [)J¥4 174
vogeoyddy uoneoiddy ayoen
SO Biemy-Ax0id SlIqOo BJemeuUN-AXCid -
—

052 @o1ag aigop

US 9,432,486 B2

Sheet 12 of 45

Aug. 30, 2016

U.S. Patent

qary ‘OId

8y
ajnpow 70% ssbeuew
uonesydde Areuonotp uoissaidwon
Areuonop

uoissasdwon 5o

iojeisusb Jepes

ol% suibua
LOIDENXS JopRal

Si% GO 48pooul]

1eposs(

[0V Jebeuep uoissesdwio)

US 9,432,486 B2

Sheet 13 of 45

Aug. 30, 2016

U.S. Patent

Ve ‘DIA

__ __ 8Ge
36¢ 96% ainpon
1efeuep JaloRuon RNl oe)
reaquesH | |14imasueiul| | oipey joa0i0ld
uoneonddy

E6C sebeuepy UonoBULOD

GGt Jebeuepy
fotod Buyoen

105
1sbrue

uolssaidwon

o

Aiopsoday

19pinoid
B0IMIBS NIOMIBN

/{
S TN

yig
Asopsodayy

UORBULIOIU| 80IN8(

776 89¢ /[{\\
einpoyy Bulores SINPOW 101EPIfEAU] BIB(
— 9% 3inpop L T T
8¢ ssaualemy AJLOLd 7FE iopaied S cle
}J000]01d {08800 BlE(] MBN aubug Aiopsodoy
TGT 2inpojy Sseudiemy Bupgoes ejepeen JUsiue)
7€ auibug JOINBUBE/ANAIOY &5E suibuzg uogeoiddy pue uosiIoeuUcs
Buideyg oyjei] TOT 48]jONUOD AXOly SSA00Y o LLH T T
gee
18A19G AXOld
| dnsemeweo | /1M _ /1 SWS _
Q0T 90eUOlU| IoMIDN
I
\I\
00¢
1BAIOG 1SOH —
ole 0029 4028 Vo35
JOPINOES Q0BG (shomes ($)49AIDS U0 (s)onto
/1BABS uogenyddy ucdnonn-3 {BLOROWIO G SPY

US 9,432,486 B2

Sheet 14 of 45

Aug. 30, 2016

U.S. Patent

qas ‘OIAd

81g
anpow 706G iebeuew
voneodde Azeuogoip uojssasduwion
Aeuonop
uossasdwon 505
— i01e10usb Japesy
916G suibus
UOHOBIIXS JOPEOH
oIS 06 18pooumy
18pooa(q

705 J19bruepy uoissaidwon

US 9,432,486 B2

Sheet 15 of 45

Aug. 30, 2016

U.S. Patent

V9 ‘OIAd

asuodsal

Buiiepiea uuo4

0€g

JO1EpHeA SUIBIUOD
1sanhai Y08y

8c9

BYOBD WM
asuodsas ulio4

» asuodsal JBAle(] €

229

[any] asuodsal ayoen

ajgeayorn
asuodsal YosyD

asundssl aneoeY

asey

ysenbai pusg

919 [punojiou]

preA Afjue 3o9yD ansom’

fiod 1sanbay asuodsai anaday

019

1senbal puag
osie}

CTleicic Rl lcl)
1senbai yosyn

ayoed dmyoo 14N 8zijeLlioN

jsenbai anl@0ay

209

US 9,432,486 B2

Sheet 16 of 45

Aug. 30, 2016

U.S. Patent

PR Ax0ld goa Bulyoed wipid paysies 1sonbay "
N - Z29% 1senhayy
Ble(] PBIX0id
- N 8.y "
9/ asuodsay pabuey) | 7 HORRILHON ejepifeall
< . Bleq Jojuop 2.y 8uoeD 12007 Wkl paysnes jsenbey
N 99y 1sanbay
397 osuodsey SWEs) eye(] paxoid
YOV eleq Jopuop «
) Zop 158nbay
STq I
| aop osuodsey e
ele(] paixoid
- "~ gopisenbey |
Ble(] paixid
¥G 9suodsay e >
Z6¥ 1senbay eieQ
G67 4epinoid S SI¥ Axoid Go% G5 190pyw
wuon/LRAIeg ddy GBY 19AISS 1S0H Bugoen AX0id 18207 UaaI0S SUIOH
N J N
7 e =
0Ly osP
oapIS-1anIBS 8UIAD(] BHGON
\ J
Y
09%

weisAg Axoid peinguisiq

U.S. Patent

Aug. 30, 2016

Sheet 17 of 45

US 9,432,486 B2

Traffic Category/Application Category 700

interactive traffic

Background traffic

User waiting for response

User not waiting for response

Application in foreground

Application in background

Backlight on Backlight off
Content Category 800

High priority Low priority

Time critical Non-time critical

FIG. 8

US 9,432,486 B2

Sheet 18 of 45

Aug. 30, 2016

U.S. Patent

6 ‘DI

BEB 4spiacidisnies
uoieadde ety woJy paysies jsenbay

56 asuodsal
3Y) SPUDS pUE Wiod) fjod SaARTY

288 1opinoid
feniss uoyeoydde auyy o (jod 8y spreMIO) pue
J|qejiene 51 AUD JYDSI PijEA OU JBY] SDUNLLLIDISE

086 15piroid JuaIUo0/IsAIaS uanEdtdde sjiog

376 Axoud Buipeo
IO BYOBD IDAIIS DU LUOLY paYSIIes 1sanboy

B16 Axo.d [2o0) 8y} 0} 9suodsas
B4} SPUAS PUR SSU0ASEI MAU B} 10} 1SaNbaI SBAB00Y

V16
B0 IBAISS B} WOJ) esuodsal auy senauial pue
s|qeyeAR S| AU syned PIRA OU TRy} SeuLLLISeg

776 18piacid weuooisnmes uogeaydde sjiog

OB SPLNIB BUIED JUBASIDS SRIBPIRAUL 'OjqRIRAR
$1 B1Bp PABUBLD 4O MBU JRU} LOHEIYIOU SaAR0aY

/06 Axold Buiyoed ayj 10
QYOED JBAISS SY} Ul PRIOIS Bsu0dses mau 1o pafiueis)

98 Avoud

|B00] 8y} SaRNOU ‘asuodses meu 10 peBuByY S10818Q

$36 osuodssl ay} spUas pue
JBAIBS 1SCY WO} IO S3A08Y

706 9inpayos Buyjod ayj uo
peseq uojesijdde ey sjind ‘panpoel suadses swes

786 asuodsal sy} spuas pue
JBASS 1SOY WO fOd $8A08Y

BTE 1sanbau ey} 0} asuodsal
Y} Jopunw 0} Japiaoid/iierlas uogesiddy sy sjod

J%a onpsyas Buijlad
e pue pajjod aq o1 ispinosdienias uopeoydde ey
10 uonediuep) ue Bupniow dnjes ayoeo sy seajeley

GF JoAkes 180y oY) o} dnas ayoed B} Spuss

55 JoA1os 180y euy 1o} ajnpayds Buyod e dn sjes
pue vogeoydde sy jo Aausnbayy Buljjod syosi)

TGB 1epiacudsaies uoneoidde ay) woy
1senbal ayy Ashes o) asuodsas ay) SeARI0Y

376 1senbay
JusLnD sy} Ajsies 0} esuodsal
e sopinosd pue uonesydde
3y wiol jsenbals od sy} seniedsy

TP 92I1nos 2y} 0} pepdesuoy 1sanbal jjog

56 Buyoen
105 20nos pajjed ay; dnids o) sapioep pue
B|GRIEABUN §1 RIBJUOD BYIBD 1B} SI991aP AXDId

ZP6 paydeniowt |jod

TF6 Jopinaudyionss uoesiidde spog

BEB Anus syoeo
e woly jjod 8y} 0} 9sucUsal e $aABIsY

BEB {lod atp Ajsues o} asuodsal g
SBADUIBI SIYY PUB PHEA S) pUB JUDIUCD paijod oy
10} B{E|IBAR S) JUSWAD SLDED jBLf) 510915p AX0id

PEB poydesisiul iog

CC6 Japinaudysatas uoliesiidde sjog4

GG66 JOPINOI JUBUOD
J1onsag uonesijddy

76 Axoid Buiyose o Jo §E§ ayoen Joaleg

G86 19AI9S JSOH

€96 Axoid |es0n

556 10Bpimuones)iddy aligow

US 9,432,486 B2

Sheet 19 of 45

Aug. 30, 2016

U.S. Patent

01 D14

BEOT Jopiacidianias
uonesydde syl Woi) paysiies 1senbsy

TEOT esuodeal sy}
SpuUs pue oy Jjod seAe0oY

TR0L Ispiaciduanies uanealdde ey o) jjod s Spieamioy
BAE S| AJJUS SYoBD PHBA Ol JBYI SBUKLISISG

280 sepinoud
BUCioAles uogeodde sfod

BR0T Axoud Buyoes 10 ayoes
JOAJOS B} UICH PAYSHES 1SBnbey

BI0T Axoud jedo) sy 03 esuodsal
BY) SPUES pUB SSUOdSas MBU DY} JO} JSeNbes SaneeY

GZ0T 940LD JOAISS AL} WOy DSUOCSDI BY) SBABLIDI
pue 8iqellBAE S| Aljus SUDED PilEA DU JRY} SBULLSIBQ

07 spinodd
JUSUOBAIES Lolledlidde siiog

7201 SOUUS SUOED JUBASISS SBIEDIEAU! |Bjqe|IRAR
s3 ejep PabUBYD JO MAU Jey) HOBEOLIOU SaABIY

0707 Axosd Buyoes sy
10 JYIRD SBAISS BUL Ul PRIDIS Bsuadsal Mau Jo pebueys

§o01 Axaid
120} By} sauiou tesuodsal mau o paSueys speisg

5907 osucdsel sy spues pue
1BASES JSOY Lol (jod SeAIB0EY

a0} sinpsuos Supiod sy
o peseq uaieajdde ayy siind ‘pasiassl asuodsas awles

Z507 osuodses ay; spues pue
IBAIES JSOY Wwody (lod SoNSDRY

TG0 1sonbad 8y} 0} 8sucdsas
BY} Jojuow o} Japiaciduanias uogeaddy au sjod

GS0T aInpayos
Buyjod e pue pejjod g o} Jepacidpaanies uoneoldde iy
10 uoesyiuapl ue Buipniou) dnies ayoed oty sansooy

950t
J9IUBY] B JO UOISIBA POZIBULIOU € JO ISHIUER] 81}
Buipniow ‘Jeaiss IS0y 8 0} 0N1As AYOELO 8y} SpUBS

PGOT [RABUIDS PUR LOREOYNUOPI BIMNY 104
2sundsal PaAIanas B} YIIM UCHEBIDOSSE Ul JDURUSP! 3yl
JO HOISIAA POZYBILLIOU B BI0JS PUE 95U0US8) BU) aUdR))

2501, sepiaoud
/enies uoneoydde sy woely jsenbag
By} AJSiES 0) 5SUOCSAL BY) $8AI808Y

TEo L 1senbes
BN sy} Alsies oy asuadses
' sepiraid pue uoneadde au
wioy} 3senbal |jlod 8y} saaRoSY

BF0L @oInos oy} 0} Papiesioy 1senbal jjod

BP0 seA1aS 104 @i} Joy ajnpayos Bujjod @
dn s19s pue uopesdde sy jo Asuenbsy Buyjod syoes
pug 1sanbas s Jo Jeyiuep ue jo wisied e sjoenxy

FHOT Buiyoes 10) aoinos pajjod aup dniss o} sapioap
PUE Q[UENBABUN S JUSIN0J BYIED 1EU} S1091eP AX0)d

201 depioad
Jianias syl Aq pafojdws s1 wisiueyoaw Buneaap
24yaED B Jey} saulualep Axoud pue pajdasieul |od

OF0L Jopiacidiianses uonedijdde sjjod

BEOL Aqua ayoes
e woy fjod ey; o} asuodssl & sanpoey

GEOL tiod ey Aysnes
O] ISLOUSEL B 9ABIIIB] O] S3PITEN PUE JUSII0D pajlod
ALy} 10} B|E[IEAR Si JUSIIOD BLDBD Jey) SpoeIap AXO1d

FEOT 4epinoid
J1BAIS By Aq pakojdws 1 wsiueyoetu Bunesiep
2YIED B Jey) seuluuaiep Axoud pue pajdsaioi {|od

ZE0L JopIAvLd/IsAses uonedydde sjjod

SBOT Jopiaoiy Jusilion
JHeateg uojgedddy

§707 Axold Buiyoen 10 GEGL 9Yoe7) J9AISS
GO0T 1oM195 180

S907 Axoud (2307

S50l
Jofipipyuoneaiddy ajigon

U.S. Patent

Aug. 30, 2016

Sheet 20 of 45

Collect information about a request and information about the
response received for the request

1102

v

'

Use information about the
request initiated at the mobile
device 1104

Use information about the
response received for the
request 1106

response cachea%

US 9,432,486 B2

No
1110

Response not cached

Store the response in the cache as a cache
entry including metadata having additional
information regarding caching of the response

1112

H
i

h 4

Detect a subsequent request
1114

v

Perform cache look-up in the local
cache to identify the cache entry to
be used in responding to the
subseguent request 1116

.4

Serve the response from the cache
to satisfy the subsequent request
1118

Does the
fesponse stored in the
cache needs to be
updated?
1120

Yes

Invalidate the response stored
in the cache of the mobile
device or remove the response
from the cache
1122

FIG. 11

US 9,432,486 B2

Sheet 21 of 45

Aug. 30, 2016

U.S. Patent

L OIA

. secl <
X 7\ y Y PayoED 8q UeD asuodsay h A
A
» ge8ct <
"1 peyoeojou asuodsay | A
A X
saA
OoN
fAx4%
PRSI e
Or__Mw%%ov oo ON iazs
oN ON ey ; PET sjqeayoes
BSUOASH, ajgesyoen ON S Iv AN saA \ B Paaoxe azis
so N\ B Peaoxe ez PaIIUADY ysenbel eyy ON
asuodssl sl 5777 SOA O ;
S $80
5zzT /7 sep~aieaipeg x4
S S8 olqeayoe))
au Uy pash
supoe /| 2zt — f
5| wm\“wwwﬁ ZZzr asuodsos [i£43 Jusi Swes au Ag pejesoush mewmm L_FmE i
p 8U} O B82S apoo sMie)s s)senbal Joyjo pue 1senba. 10 8215 o) 80¢t
ezfjeuy ay} suiuLBlEQ ay Ajauepi mm_w. m_wwﬁwwnm%ﬁ%%mc_ Suseq no%mﬁ Wwwwg
GOZT 158nbal 8y} Joy poaedal oA ﬂ 07T % %
asuodsal aUl UM POIBIDOSSE UOHRULIOM SOlSIBloRIRYD Bsuodsel azAeuy 159nDO SUI YIM POIEINOSSE LORBLLIOM SONSUAIORIBYD Jsonbo: azAleLy

A A

oneullsep paisioe)
2 0} Po10alp 1sanbol

ON ON

US 9,432,486 B2

Sheet 22 of 45

Aug. 30, 2016

U.S. Patent

&1 °OId

¢ sasuodses ay)

Y

G6el
pPayoes 8q ueo JUsU0o asuodsey

0 OM] JSES] JE JO JUSIUO
Y} ul AJUBIUIIS B19Y) Si JO
sules sy} sasuodsal

S8l

payoro Jou ssuodsay

h

ay) ary

ZIET OIET
sosuodsai sasuodsad
SUY UM pajeloosse a1 Jo sapog asuodsal
S8P00 SNIBYS aueXg JO sanjen ysey suiiexy
A A
VOET

sasuodsas ai Jo JusjuoD Ut Ajigeieadal
10819p 0] Wslo ay) Aq paljeseush
sysonbai 1o} poalasas sasuodsal Yol |

A

/TN

SOA

80E1
¢ 1BAS]
aouUeIa{0] B UitIIMm {je}
s{eAlalul 1sanbay
°a

;sysenbal ey jo
Bunwg sy ul sussped
ajgeloipaid sisy

FAV
sysanbay sy} jo Aoipousd
10818p 0} JualO 8yl Ag pajeseual sysenbai yoes |

U.S. Patent Aug. 30, 2016 Sheet 23 of 45 US 9,432,486 B2

Track requests generated by a client or
directed o a host at the mobile device
to detect periodicity of the requests
1402

Y v

Determine that the request

. Determine that the request
intervals between the {fwo or more .
intervals between the two or more
requests are the same or e
- requests fall within a tolerance fevel
approximately the same
1404 1406

y v

Receive the response received for

: A Determine a rate to monitor a host,
the requests for which periodicity is .
< from the request intervals
detected 1410
1408 a—
Cache a response as a cache entry h J .
in & cache of the mobile device Detect change in request
1412 v intervals for requests
enerated by the client
i Set or update the g 1 42)/2
Monitor the host at a rate rate? at whtch.the
. given hostis
to verify relevance or | monitored to verif .
Vahdlty of the cache eniry o ’ y Compute a different ra'le
1414 relevance or Vahdlty - based on the Change in
of the cache entry ™ request intervals
i l 1420 1424

Serve the response from the cache
{0 satisfy a subsequent request
1416

FIG. 14

US 9,432,486 B2

Sheet 24 of 45

Aug. 30, 2016

U.S. Patent

F2GT Eiep pabuesys 10 mau auy 1o Buipuss sy sseiddng

§1°DIA

sl

B0IABD BJIGOW B} 0] B1ep pabueyd 10 meu By pues

h

W

S

oN

ON

SOA

2251
SBIED)
Ui papinosd
8q pinem ey
asuodses 240§

ON

0751
¢1E0nLID Bu

SOA

01Gt
eep oy azpobayen

1

80S1

gjep pebuetn Jo msu sy o Ageonio su 1o Aopd susieg

orgl
punodfivoeq
aul w Buuung
uogeoydde
8 st

SBA

ON

¥IGL
£ 201A3D
SIGOL B
uo punosBeio}
ay u Buuuni

ON

ON

ON

SBA

2191
4, 80INIP
ajiqow ey
UQ J9sh B yIim
Bunorsoyu e1es
aANDe Ue U
uoneaydde,

90g1
uopeoldde ayy ozobeen

1

1

peiosup S| elep pabuByd JO MBU ALy orim O} uotedydde ue Ajpusp)

POS1

1

0GT S0M8P SRqOLL B 0} JUSS 3Q O} ojgepeae elep pabueyo 10 meu 10e18Q

U.S. Patent Aug. 30, 2016 Sheet 25 of 45 US 9,432,486 B2

h 4 A 4

Wait until for a time period to Wait until there is additional
elapse 1602 data to be sent 1604

Y Y

Transmit the new or changed data 1606

FIG. 164

US 9,432,486 B2

Sheet 26 of 45

Aug. 30, 2016

U.S. Patent

qa91 ‘DIA

8691 2ol
zeot o or ot
(o) (HOV:) . 2
ey jsuueyD
nwaoﬁwg $59008 zot F£4])
: piemio 341 9862/9¢
A X A X
0761 swiod ssaooe 819% BToT ENIN
BuiAjoads Aq uogesnByuon ajes ejep Ag vonembyoo Oror ok M
JOMISU B }0818G JHomisu B 109185 IPLUBLO 889908 J0 wales SSoIR 10 UOReIouSD iookes

%

i

1

1

HIOMIBU SSIOAM BLf) Ui JOAISS SO B PUB SOIASP S)IGOW B USoMIag oyjel; Buipuas Uy asn 10y UonEMBYU0D YIOMIsU & 198j93

0191

JBAISS 1504 8Y) PUB B0IASD SPGOLL DU} USBMID] JUES 8y
0} Dilel] BY} Ul PAUIBIUOD BIED JO ABEOILD BU B 8uUiLLIBIB(]

Wio PalewBLIO JO 0} PRISHP St DR YOIUM 10} 90IAD
2jiqowt 8y} U0 uogesydde ue o 81.1s AuAagoe ue 108190

8091

US 9,432,486 B2

Sheet 27 of 45

Aug. 30, 2016

U.S. Patent

91 DI

2val
BOIABD BJIGOLS BY)
WwoJy pue o) oyes Buissed w
98N 10} HIOMIOU SSBIBIM 8L} U
uoHEINBIUOD HIoMBU B 108(8S

0vol
ybBnosy ssed

0} POMOJIE Sf DfjEl} BY) YOIYM
yum Builgy ey) Lo POSE(Q B0IASP
BjIgOoUS 8L} Lo 98N OIPE.J JOHU0D

X

A

8¢9l
Ayjeonuo el 8y Jo ojeys
‘yBnosy) ssed o} Jigel 8yl Moje O}

Ajagoe oyt Uo paseq
Yoym yim Buiung e suiuisiag

9¢9l
1OAIBS 1SOY BY} PUE 9DIAP BlIqOW BY)

U99aM}Oq JUSS 84 O} DI B} Ul PBLIRIUOD
B1ED JO AJBONLIO BLUA © suiwILa(]

ye9lL
wol pejeurbuo 1o 0] payanp

St Oljes YOIUM JOJ 8DIASD 9jIqOW oL} Uo
uonesidde ue jo siels Aualjoe ue 1081

U.S. Patent Aug. 30, 2016 Sheet 28 of 45 US 9,432,486 B2

T

Detect backlight status Determine whether
of the mobile device a user is expecting
1702 data contained in the
traffic directed to the
M . mobile device
i 1706

Detect user interaction
with an application on
a mobile device
1704

Y

Y 4 4

Determine an activity state of an application on the mobile
device for which traffic is originated from or directed to
1708

A4
Select whether 3G, 4G or LTE network is used
in sending traffic between a mobile device and
a host server in the wireless network
1710

FIG. 17

US 9,432,486 B2

Sheet 29 of 45

Aug. 30, 2016

U.S. Patent

00:90

oi8i

f

90:¢0 bue $5:20
ussamieq psusddey
} 9sed ui opousd
PaIBPISUOD USB(Q oABY
Osje pihom jsanbay

8081

f

81 OIA

jeAlslul INOY |

10 asen Ul i Z1 o'l
‘leaayul snoinaad ay)
10 %0Z St SMOPUIAA

noy |
00:¢€0 — 00
A

Z0

0081

noy |
00:20 — 00:40
Al

00:00

90:

}sanbai €
00:€0

Janies Axosd sy 0} paytoads (unoy |
“Ba) jeasaul yum 1senbau Buijod peys
Spuas pue asuodsal ssyoro Axoid
1E00] ‘pajosiap st isanbal oipousd

}sanbau oul

00:20

[eAtslul ypm pajepdn
Buseq s1 Ajus syoen

\I\

2081

\I\

P081L

Isenbai |
00:10

pojesio Buiag
st Aue ayoen

\I\

c08l

US 9,432,486 B2

Sheet 30 of 45

Aug. 30, 2016

U.S. Patent

61 'DIA

sejnuiw g SeINUIWL GG noy |
060 — §9:€0 GG-€0~ 00:€0 00:€0 ~ 0020
00,50 A ~ A\ N 00:10
isenbai g jsenbas y jsenbas 2
0590 60 0020
isanbas ¢
'SBINUIL || O} 7} Loy 00:€0
sabueys azis MOPUIA “(Semul GG
0} 198 Mmou 8} jeAsaiul pajepdn MOPUIM BLj}

Jansas Axosd o] (anoy | 0} “H8)

yum Jsenbsi Gujjod Jels Buipussal Ojui SHj {{I1S jeAlsiu]
pue syoeo Buyselel ‘Jeates Axoid \l\

Wwoij 90inosas BuinsLyay "siowiue

MOPUIM DY) OJUi i JOU SS0P jBAISIU| v061

9061

198 {ealajul Uypim 1senbal Bujod uels
spuos pue ssuodssal seyoed Axold
{220} ‘pojosiap 1senbal dipoudd

\l\

206l 0061

US 9,432,486 B2

Sheet 31 of 45

Aug. 30, 2016

U.S. Patent

0¢-€0

0¢ "DIA

00:€0

1sanbas punoibsio ol

1senbal punoibsioy sk

0Z.€0 0L:€0 e senbas ¢
8002 -~ o
~ e 00:€0
N ,J P
~ 4BAIBS BL) s
~ 01 1ues 10U st jeasaiul ~ <
> MmapN ‘pajepdn 166 [jim P
~ ejep asucdsal payoeD o Anoy g
~ ~00:€0 ~ 00:20
00:90 N Lo 00:L0
: S 7 ~ :
|
|
1senbai e 158nbai wb 1senbau ol
0050 0040 00:20
senbas @
00:€0
8YDRD WAl
poAlas asuodsoy po Mwmﬂomm%m Y
7 18498 0} (1noy | o1 “6'9)
1 198 [eAoU; Uypim 1sanbau Bujjod ~ 0007

9002

$00C

Hels spues pue asuodsal ssyoes
2002 \ JUSHD ‘PeIOSIaP 1S8NDAS DIPOLDY

US 9,432,486 B2

Sheet 32 of 45

Aug. 30, 2016

U.S. Patent

0012 IC 'DIA
moy | noy |
Z20:'80 — 20v0 Z0'v0 — 20:E0
00-40 e A N N 00-20
cowwwmmﬁmwpwmo sofiueyo ou ‘9onosau sjjod Jaaieg
SpUaS IBAIBG | e ; 20'v0
\\l_o S afueyd s1o81ep ‘90inossl sjjod Jenieswmmmmm_..ﬂ_oa SOAI001 JOAIOG
Z0:50 .
20:€0
oLz
sabueyd 99n0say / R 80i2
0Z¥0 _._:os { 01198 _m?_ﬁc:
00:40 q 00:20
................................ v TTTIIIaassasasssasansise
uoneplieAul syseD 1senbei ¢
¥0:60 00-€0
Jsenbel g b
00:90 15enbal .y
Jsenbay G 00:v0 1eni9s 0} Jsenbel Buyiod
00:50 He]s spuas pue asuadssas Sayoed

Jeje; pouad | poisalep
MOU JUBILOD Y58l

\Ix

904¢

paleAljep ussq sary
v01Z \ PINOM JUSILOD Yseid

WBHO ‘pel0slep jsenbal opousd

\J\

AN

US 9,432,486 B2

Sheet 33 of 45

Aug. 30, 2016

U.S. Patent

(4344

—~

1anes of {unoy | o) “Ha)
193 feasops yum Jsonbos Bugiod
1eIS Spuas pue ssuodsas seyoen
1eHa ‘pejoeiep 1eenbel oipousd

¢ DI

oLz

\J\

[eataiul yiim
payepdn Buteg
st Ajua ayoen

8022

\‘\

paieass Bueq
81 Aus syoe)

0070 00:00
~ - — \
~— 18anbas 7 \
1sonbas ¢ S~ 00:20 \
00:€0 T)sanbau) \
™ - — o / N
0050 - _ _ 00°10 0:00
OLOZ/L /08 ~—_ 0L02/11/62
]
|
{
paAcuwial syeb 1s8nbai ")
glep Mmmmvawmm 00:10
1senbes G
1s8nbai w8 co“mo5
00:%0
3YOBD WOy
QAJBS asuodsa
18nes 0} {Jnoy | 0} “'6a) 9072 i o
as fearelul yim jsenbau Bugjod r~— [
198 [BAISIUL LI il H 06ze

RIS spuss pue asuodsel seoed
wslo ‘pejosiep jsanbal sipousd

0022

v022

(sinoy $z 0} B 9)
10s 1| elep asuodsay

U.S. Patent Aug. 30, 2016 Sheet 34 of 45 US 9,432,486 B2

Compress an uncompressed data chunk in a data stream to be transmitted over
the wireless network to generate a compressed data chunk
2302

A 4

Compare sizes of the uncompressed data chunk with the compressed data
chunk 2304

A 4

Determine which of the uncompressed data chunk and the compressed data
chunk is smaller in size 2306

\ 4 4
Include a header in the optimized data stream
to indicate which of uncompressed data
chunk and the compressed data chunk is
fransmitted 2310

Transmit an optimized data
stream comprising of the
uncompressed data chunk or
the compressed data chunk
over the wireless network,

depending on which is -
smaller in size 2308 Update a compression dictionary if the

compressed data chunk is transmitted in the
optimized data stream 2312

Y

\ 4

Apply the compression dicticnary when the
compressed data chunk is transmitted to
decode the compressed data chunk 2314

FIG. 23

U.S. Patent Aug. 30, 2016 Sheet 35 of 45 US 9,432,486 B2

2400

Processor

Video Display

‘ instructions

Alpha-numeric Input Device

Main Memory

Bus

instructions

‘ Cursor Control Device

Drive Unit

Machine-readable
{Storage) Medium

Non-volatile Memory

Instructions
Network Interface Device

Signal Generation Device

~__

FIG. 24

U.S. Patent

Aug. 30, 2016

Sheet 36 of 45

2550

US 9,432,486 B2

, Hobie Apgication Apphioation
53 | gedce sepvatizasient servarcontE
3 E peivdviay sHeder
H H ¥
; :
Inaclive peviod ;
'}ﬁ‘ﬁ% Dhefodt = 1208 {30 ming) ; :
, H §
' H
{ Pt:«msr FRANG GG fomrrnl Sy : !
P e Newln ’\&W ita :
M{; Power Sa %
oo Grne e ; : "Nw Dt
 Harod Ong i*e(w; Thats e
A0k cetast = 900 035 miew o *
{ *::;}et T 157 earhmnt g R : :
o 4, Fowey Bave Penogy i .
St 1 Sl Sl ?&’éﬁ%‘ Pensd . e bt
e Y
@P{m&f Save Pasods x ;
R F@!jt}d £ o

o e Dt
5
=4 Poveny Bave Senog §

FI.

g R Tt

PR S SUOE SV

U.S. Patent Aug. 30, 2016 Sheet 37 of 45 US 9,432,486 B2

£
anbde Deiie gfwﬁ}

il ey Fsien
*,

I 5

Loal Prowy oapstasist

2648

Se imneait

_J;’v’ b Pl

E:

el A Fossonse

bl

g&i‘g? ST Faegsmat
2 " Sra A
Kt
285V /’ 2 Rentan
3 e

U.S. Patent Aug. 30, 2016 Sheet 38 of 45 US 9,432,486 B2

'&?ﬁz T mmien B s : ;
R e 4 - %

»
o AEG

£3

f}:}%‘% -4 ﬂn&?mw %

ﬁ"‘"‘-‘m

Huniig 4
e %

MR et IR

£

- 866

b - o

Raspungg

o]
Pl A 1024 1

B TesnN,
Faspant Sven Rl

k4

ey

Ravpsosts sellie {
bek gt an : >“
vttt Bes 5
Pgn 102 o i
oy, SO e P

Seted ' e S

Lo pold 4

e
¥

v,

;

Y

i ROIEERERENVEPR

Fra 3l

U.S. Patent Aug. 30,2016

-y L0

@—{ i 17 siatiat |/ il

.,..u.

me
HE B periosks b
fugterg ifﬂ e

detesded? Yon

3. My
S

Sheet 39 of 45

térz o§

US 9,432,486 B2

3340

/?

Gatun
sammed ;fes!

4 e
a1 i alotte o nggw
ok o Y2 b satters e RN ""‘fﬁ ;"ﬁ)
[ro % delncted? Yo b , o R
¥ s - ;
fgg;:;pﬁ:;g gﬁ‘%"‘fﬁ e nnnnnn . s~ Pods DL JWMV}
s dednged? | abie e vos |
ﬁ%xfﬁ { St poding)
ivathy Riamd i}‘,
w%‘i
o
)

Fic. 3%

2400

Sheet 40 of 45

Aug. 30, 2016

U.S. Patent

14

014

iy

alby

w&m ma% e

oy

e

01ut

gouT
a0k~ |

51375 4 s

2048 -

\

LR
AT

o847 e

g Biney, 0F SpunleRIa R benod

US 9,432,486 B2

Sheet 41 of 45

Aug. 30, 2016

U.S. Patent

woe A

o w14,
010%
...{J« .f}M
P ST B
L st saodney
v ao 0% |
§ -
Py u.#
4 1 2
3
o sty b P
X ,M
Fal s00f 7 ¥ LeiMedend

ay mwm. . s..,%,.xx

US 9,432,486 B2

Sheet 42 of 45

Allg. 30, 2016

U.S. Patent

q0% 9id

higt

S

£

Ui+ 0y

US 9,432,486 B2

Sheet 43 of 45

Aug. 30, 2016

U.S. Patent

£

GBS
AR

P gt
R SRR

s
——— QﬁwM\

et
F e 2 %ﬁwﬂwmé
%aﬁ@ﬁ%w?m&%ﬁw e

SR o
fsstiieses ety e B
- S
N e A
5 .. w«mmm
& ./wv %m
340 ~ “ . kS (DR
FE Aoy L g / e adiiahe
7 L TR SERAESIRI R ; phoipeby
mm w M, o .waﬁmbﬁmmm s FRREEISURTY 3 ;
E R Yo h s e SOEEEREGe ;
Sk : CIACATY AN S

et aaany sais

AN a0t 58] 1% e L

e

4

g01% 2 at$

U.S. Patent Aug. 30, 2016 Sheet 44 of 45 US 9,432,486 B2

i PaeRists e e
Himehe e

FIG. 3%

1302 20 3500

i

i

Cashe . e Enty A %&tmﬁscia ,

e
3

e

G

Fasnoassiamg

widnin

FIG. 33

U.S. Patent Aug. 30, 2016 Sheet 45 of 45 US 9,432,486 B2

Sormething sonvimysanvise Vs yea ecapoh milliepcondss o
e IYETREAT G 0

- 4oz

A ERRROGES R

m\r\i/,f

3 *i o J Gometing comimysenicaPren yra e vapnct_milisesonss
3 I i
<\‘&

bd
%

v Sorwdhing comfmyservics Tavo yeg espieh milllseconde 7
N e ot

i, 34&

Soreiting comfoyserdon e]yt o
s ARG

*
; A g
s oK agey
; g{?&% . Sorsathing condmyseraiteior], ety o
I < T STEREONEE % 1

X

i oo s

Y Somathing condvusendosRe) vy o
o SRR TRRIGR ¥

ric. 38

US 9,432,486 B2

1
SELECTIVE DATA COMPRESSION BY A
DISTRIBUTED TRAFFIC MANAGEMENT
SYSTEM TO REDUCE MOBILE DATA
TRAFFIC AND SIGNALING TRAFFIC

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a Continuation and claims the benefit
of US. patent application Ser. No. 13/467,159 entitled
“SELECTIVE DATA COMPRESSION BY A DISTRIB-
UTED TRAFFIC MANAGEMENT SYSTEM TO
REDUCE MOBILE DATA TRAFFIC AND SIGNALING
TRAFFIC,” which was filed on May 9, 2012, which is a
Continuation-In-Part and claims the benefit of U.S. patent
application Ser. No. 13/274,265 entitled “Caching Adapted
For Mobile Application Behavior and Network Conditions,”
which was filed on Oct. 14, 2011 which claims the benefit
of U.S. Provisional Patent Application No. 61/408,858
entitled “CROSS APPLICATION TRAFFIC COORDINA-
TION”, which was filed on Nov. 1, 2010, U.S. Provisional
Patent Application No. 61/408,839 entitled “ACTIVITY
SESSION AS METHOD OF OPTIMIZING NETWORK
RESOURCE USE”, which was filed on Nov. 1, 2010, U.S.
Provisional Patent Application No. 61/408,829 entitled
“DISTRIBUTED POLICY MANAGEMENT”, which was
filed on Nov. 1, 2010, U.S. Provisional Patent Application
No. 61/408,846 entitled “INTELLIGENT CACHE MAN-
AGEMENT IN CONGESTED WIRELESS NETWORKS”,
which was filed on Nov. 1, 2010, U.S. Provisional Patent
Application No. 61/408,854 entitled “INTELLIGENT
MANAGEMENT OF NON-CACHEABLE CONTENT IN
WIRELESS NETWORKS”, which was filed on Nov. 1,
2010, U.S. Provisional Patent Application No. 61/408,826
entitted “ONE WAY INTELLIGENT HEARTBEAT”,
which was filed on Nov. 1, 2010, U.S. Provisional Patent
Application No. 61/408,820 entitled “TRAFFIC CATEGO-
RIZATION AND POLICY DRIVING RADIO STATE”,
which was filed on Nov. 1, 2010, U.S. Provisional Patent
Application No. 61/416,020 entitled “ALIGNING BURSTS
FROM SERVER TO CLIENT”, which was filed on Nov. 22,
2010, U.S. Provisional Patent Application No. 61/416,033
entitled “POLLING INTERVAL FUNCTIONS”, which was
filed on Nov. 22, 2010, U.S. Provisional Patent Application
No. 61/430,828 entitled “DOMAIN NAME SYSTEM
WITH NETWORK TRAFFIC HARMONIZATION”,
which was filed on Jan. 7, 2011, U.S. Provisional Patent
Application No. 61/532,857 entitled “CACHE DEFEAT
DETECTION AND CACHING OF CONTENT
ADDRESSED BY IDENTIFIERS INTENDED TO
DEFEAT CACHE”, which was filed on Sep. 9, 2011, U.S.
Provisional Patent Application No. 61/533,007 entitled
“DISTRIBUTED CACHING IN A WIRELESS NET-
WORK OF CONTENT DELIVERED FOR A MOBILE
APPLICATION OVER A LONG-HELD REQUEST”,
which was filed on Sep. 9, 2011, and U.S. Provisional Patent
Application No. 61/533,021 entitled “APPLICATION AND
NETWORK-BASED LONG POLL REQUEST DETEC-
TION AND CACHEABILITY ASSESSMENT THERE-
FOR”, which was filed on Sep. 9, 2011, the contents of
which are all incorporated by reference herein.

This application is related to U.S. patent application Ser.
No. 13/176,537 entitled “DISTRIBUTED CACHING AND
RESOURCE AND MOBILE NETWORK TRAFFIC MAN-
AGEMENT,” which was filed on Jul. 5, 2011, the contents
of which are herein incorporated by reference.

10

15

20

25

30

35

40

45

50

55

60

65

2

This application is related to U.S. patent application Ser.
No. 13/274,501 entitled “Request and Response Character-
istics based Adaptation of Distributed Caching In A Mobile
Network”, which was filed on Oct. 17, 2011, and the
contents of which are herein incorporated by reference.

This application is related to U.S. patent application Ser.
No. 13/274,250 entitled “Distributed Caching In A Wireless
Network Of Content Delivered For A Mobile Application
Over A Long-Held Request”, which was filed on Oct. 14,
2011, and the contents of which are herein incorporated by
reference.

This application is related to U.S. patent application Ser.
No. 13/274,248 entitled “APPLICATION AND NET-
WORK-BASED LONG POLL REQUEST DETECTION
AND CACHEABILITY ASSESSMENT THEREFOR”,
which was filed on Oct. 14, 2011 and now is U.S. Pat. No.
8,166,164, and the contents of which are herein incorporated
by reference.

BACKGROUND

Applications are changing the industry as carriers and
handset manufacturers, both, are seeking partnerships with
application and content providers to differentiate their prod-
ucts and services. For the network, this can only mean more
signaling and bandwidth challenges, on top of the unsolved
problems of today. The 4G/LTE network roll out is expected
to help with added bandwidth, but it may lead users to use
more data neutralizing that benefit. For signaling, though,
4G/LTE won’t be a fix for a number of reasons including the
flat network design and the fact that the only devices on a 4G
network are Smart phones. With a mass migration from a
wired world to everything mobile at the forefront of the
industry and the network, traffic optimization is going to be
a critical part of keeping network performance and user
satisfaction very high.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates an example diagram of a system where
a host server facilitates management of traffic, content
caching, and/or resource conservation between mobile
devices (e.g., wireless devices), an application server or
content provider, or other servers such as an ad server,
promotional content server, or an e-coupon server in a
wireless network (or broadband network) for resource con-
servation. The host server can further facilitate selective data
compression for the reduction of mobile data traffic and
signaling traffic.

FIG. 1B illustrates an example diagram of a proxy and
cache system distributed between the host server and device
which facilitates network traffic management between a
device, an application server or content provider, or other
servers such as an ad server, promotional content server, or
an e-coupon server for resource conservation and content
caching. The proxy system distributed among the host server
and the device can further facilitate selective data compres-
sion for the reduction of mobile data traffic and signaling
traffic.

FIG. 2A depicts a block diagram illustrating an example
of client-side components in a distributed proxy and cache
system residing on a mobile device (e.g., wireless device)
that manages traffic in a wireless network (or broadband
network) for resource conservation, content caching, and/or
traffic management. The client-side proxy (or local proxy)
can further categorize mobile traffic and/or implement deliv-

US 9,432,486 B2

3

ery policies based on application behavior, content priority,
user activity, and/or user expectations.

FIG. 2B depicts a block diagram illustrating a further
example of components in the cache system shown in the
example of FIG. 2A which is capable of caching and
adapting caching strategies for mobile application behavior
and/or network conditions. Components capable of detect-
ing long poll requests and managing caching of long polls
are also illustrated.

FIG. 2C depicts a block diagram illustrating additional
components in the application behavior detector and the
caching policy manager in the cache system shown in the
example of FIG. 2A which is further capable of detecting
cache defeat and perform caching of content addressed by
identifiers intended to defeat cache.

FIG. 2D depicts a block diagram illustrating examples of
additional components in the local cache shown in the
example of FIG. 2A which is further capable of performing
mobile traffic categorization and policy implementation
based on application behavior and/or user activity.

FIG. 3A depicts a block diagram illustrating an example
of server-side components in a distributed proxy and cache
system that manages traffic in a wireless network (or broad-
band network) for resource conservation, content caching,
and/or traffic management. The server-side proxy (or proxy
server) can further categorize mobile traffic and/or imple-
ment delivery policies based on application behavior, con-
tent priority, user activity, and/or user expectations.

FIG. 3B depicts a block diagram illustrating a further
example of components in the caching policy manager in the
cache system shown in the example of FIG. 3A which is
capable of caching and adapting caching strategies for
mobile application behavior and/or network conditions.
Components capable of detecting long poll requests and
managing caching of long polls are also illustrated.

FIG. 3C depicts a block diagram illustrating another
example of components in the proxy system shown in the
example of FIG. 3A which is further capable of managing
and detecting cache defeating mechanisms and monitoring
content sources.

FIG. 3D depicts a block diagram illustrating examples of
additional components in proxy server shown in the example
of FIG. 3A which is further capable of performing mobile
traffic categorization and policy implementation based on
application behavior and/or traffic priority.

FIG. 4A depicts a block diagram illustrating another
example of client-side components in a distributed proxy
and cache system, further including a compression manager.

FIG. 4B depicts a block diagram illustrating additional
components in the compression manager shown in the
example of FIG. 4A.

FIG. 5A depicts a block diagram illustrating an example
of server-side components in a distributed proxy and cache
system, further including a compression manager.

FIG. 5B depicts a block diagram illustrating additional
components in the compression manager shown in the
example of FIG. 5A.

FIG. 6A depicts a flow diagram illustrating an example
process for distributed content caching between a mobile
device (e.g., any wireless device) and remote proxy and the
distributed management of content caching.

FIG. 6B depicts a timing diagram showing how data
requests from a mobile device (e.g., any wireless device) to
an application server/content provider in a wireless network
(or broadband network) can be coordinated by a distributed
proxy system in a manner such that network and battery

10

15

20

25

30

35

40

45

50

55

60

65

4

resources are conserved through using content caching and
monitoring performed by the distributed proxy system.

FIG. 7 depicts a table showing examples of different
traffic or application category types which can be used in
implementing network access and content delivery policies.

FIG. 8 depicts a table showing examples of different
content category types which can be used in implementing
network access and content delivery policies.

FIG. 9 depicts an interaction diagram showing how polls
having data requests from a mobile device (e.g., any wireless
device) to an application server/content provider over a
wireless network (or broadband network) can be can be
cached on the local proxy and managed by the distributed
caching system.

FIG. 10 depicts an interaction diagram showing how polls
for content from an application server/content provider
which employs cache-defeating mechanisms in identifiers
(e.g., identifiers intended to defeat caching) over a wireless
network (or broadband network) can be detected and locally
cached.

FIG. 11 depicts a flow chart illustrating an example
process for collecting information about a request and the
associated response to identify cacheability and caching the
response.

FIG. 12 depicts a flow chart illustrating an example
process showing decision flows to determine whether a
response to a request can be cached.

FIG. 13 depicts a flow chart illustrating an example
process for determining potential for cacheability based on
request periodicity and/or response repeatability.

FIG. 14 depicts a flow chart illustrating an example
process for dynamically adjusting caching parameters for a
given request or client.

FIG. 15 depicts a flow chart illustrating example pro-
cesses for application and/or traffic (data) categorization
while factoring in user activity and expectations for imple-
mentation of network access and content delivery policies.

FIG. 16A depicts a flow chart illustrating example pro-
cesses for handling traffic which is to be suppressed at least
temporarily determined from application/traffic categoriza-
tion.

FIG. 16B depicts a flow chart illustrating an example
process for selection of a network configuration for use in
sending traffic based on application and/or traffic (data)
categorization.

FIG. 16C depicts a flow chart illustrating an example
process for implementing network access and content deliv-
ery policies based on application and/or traffic (data) cat-
egorization.

FIG. 17 depicts a flow chart illustrating an example
process for network selection based on mobile user activity
or user expectations.

FIG. 18 depicts a data timing diagram showing an
example of detection of periodic request which may be
suitable for caching.

FIG. 19 depicts a data timing diagram showing an
example of detection of change in request intervals and
updating of server polling rate in response thereto.

FIG. 20 depicts a data timing diagram showing an
example of serving foreground requests with cached entries.

FIG. 21 depicts a data timing diagram showing an
example of the possible effect of cache invalidation that
occurs after outdated content has been served once again to
a requesting application.

FIG. 22 depicts a data timing diagram showing cache
management and response taking into account the time-to-
live (TTL) set for cache entries.

US 9,432,486 B2

5

FIG. 23 depicts a flow chart illustrating an example
process for enhancing resource management in a wireless
network through selective data compression to reduce
mobile data traffic and signaling traffic.

FIG. 24 shows a diagrammatic representation of a
machine in the example form of a computer system within
which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed.

FIG. 25 depicts a diagram showing one example process
for implementing a hybrid IP and SMS power saving mode
on a mobile device (e.g., any wireless device) using a
distributed proxy and cache system (e.g., such as the dis-
tributed system shown in the example of FIG. 1B).

FIG. 26 depicts an interaction diagram showing cache
management by a distributed proxy system of content deliv-
ered to a mobile application over a long-held request while
ensuring freshness of content delivered.

FIG. 27 depicts a timing diagram showing hunting mode
behavior in a long poll request and a timing diagram
showing timing characteristics when the long poll has
settled.

FIG. 28 depicts a flow diagram illustrating an example
process for using request intervals to determine and to set a
polling interval or rate at which a proxy server is to monitor
an application server/content host on behalf of the mobile
device (e.g., any wireless device).

FIG. 29 depicts example timing diagrams showing timing
characteristics for wvarious types of request-response
sequences.

FIG. 30A depicts an example of a timing diagram show-
ing timing characteristics for request-response sequences.

FIG. 30B depicts an example of a timing diagram show-
ing timing characteristics for request-response sequences
characteristic of a long poll.

FIG. 31 depicts a diagram of an example of the compo-
nent API layer for the cache store.

FIG. 32 depicts a diagram showing one example of the
data model for the cache store.

FIG. 33 depicts a conceptual diagram of one example of
the data model of a cache entry in the cache store.

FIG. 34A-B depicts example request-response pairs
showing cacheable responses addressed by identifiers with
changing parameters.

DETAILED DESCRIPTION

The following description and drawings are illustrative
and are not to be construed as limiting. Numerous specific
details are described to provide a thorough understanding of
the disclosure. However, in certain instances, well-known or
conventional details are not described in order to avoid
obscuring the description. References to “one embodiment”
or “an embodiment” in the present disclosure can be, but not
necessarily are, references to the same embodiment and such
references mean at least one of the embodiments.

Reference in this specification to “one embodiment” or
“an embodiment” means that a particular feature, structure,
or characteristic described in connection with the embodi-
ment is included in at least one embodiment of the disclo-
sure. The appearances of the phrase “in one embodiment™ in
various places in the specification are not necessarily all
referring to the same embodiment, nor are separate or
alternative embodiments mutually exclusive of other
embodiments. Moreover, various features are described
which may be exhibited by some embodiments and not by

10

15

20

25

30

35

40

45

50

55

60

65

6

others. Similarly, various requirements are described which
may be requirements for some embodiments but not other
embodiments.

The terms used in this specification generally have their
ordinary meanings in the art, within the context of the
disclosure, and in the specific context where each term is
used. Certain terms that are used to describe the disclosure
are discussed below, or elsewhere in the specification, to
provide additional guidance to the practitioner regarding the
description of the disclosure. For convenience, certain terms
may be highlighted, for example using italics and/or quota-
tion marks. The use of highlighting has no influence on the
scope and meaning of a term; the scope and meaning of a
term is the same, in the same context, whether or not it is
highlighted. It will be appreciated that same thing can be
said in more than one way.

Consequently, alternative language and synonyms may be
used for any one or more of the terms discussed herein, nor
is any special significance to be placed upon whether or not
a term is elaborated or discussed herein. Synonyms for
certain terms are provided. A recital of one or more syn-
onyms does not exclude the use of other synonyms. The use
of examples anywhere in this specification, including
examples of any terms discussed herein, is illustrative only,
and is not intended to further limit the scope and meaning of
the disclosure or of any exemplified term. Likewise, the
disclosure is not limited to various embodiments given in
this specification.

Without intent to limit the scope of the disclosure,
examples of instruments, apparatus, methods and their
related results according to the embodiments of the present
disclosure are given below. Note that titles or subtitles may
be used in the examples for convenience of a reader, which
in no way should limit the scope of the disclosure. Unless
otherwise defined, all technical and scientific terms used
herein have the same meaning as commonly understood by
one of ordinary skill in the art to which this disclosure
pertains. In the case of conflict, the present document,
including definitions, will control.

Embodiments of the present disclosure include systems
and methods of selective data compression to reduce mobile
data and signaling traffic.

There are multiple factors that contribute to the prolifera-
tion of data: the end-user, mobile devices, wireless devices,
mobile applications, and the network. As mobile devices
evolve, so do the various elements associated with them-
availability, applications, user behavior, location thus chang-
ing the way the network interacts with the device and the
application.

The disclosed technology provides a comprehensive and
end-to-end solution that is able to address each element for
operators and devices manufacturers to support both the
shift in mobile or wireless devices and the surge in data by
leveraging the premise that mobile content has a definable or
relevant “freshness” value. The “freshness” of mobile con-
tent can be determined, either with certainty, or with some
heuristics having a tolerance within which the user experi-
ence is enhanced, or not negatively impacted, or negatively
impacted but is either not perceptible to the user or within a
tolerable threshold level.

The disclosed innovation transparently determines such
“freshness” by monitoring, analyzing, and applying rules
(which may be heuristically determined) the transactions
(requests/responses) between applications (e.g., mobile
applications) and the peers (corresponding server or other
clients). Moreover, the technology is further able to effec-
tively cache content which may be marked by its originat-

US 9,432,486 B2

7

ing/host server as being “non-cacheable” and identify some
“freshness” value which can then be used in implementing
application-specific caching. In general, the “freshness”
value has an approximate minimum value which is typically
determined using the update interval (e.g., interval with
which requests are sent) between the application and its
corresponding server/host.

One embodiment of the disclosed technology includes a
system that optimizes multiple aspects of the connection
with wired and wireless networks and devices through a
comprehensive view of device and application activity
including: loading, current application needs on a device,
controlling the type of access (push vs. pull or hybrid),
location, concentration of users in a single area, time of day,
how often the user interacts with the application, content or
device, and using this information to shape traffic to a
cooperative client/server or simultaneously mobile devices
without a cooperative client. Because the disclosed server is
not tied to any specific network provider it has visibility into
the network performance across all service providers. This
enables optimizations to be applied to devices regardless of
the operator or service provider, thereby enhancing the user
experience and managing network utilization while roam-
ing. Bandwidth has been considered a major issue in wire-
less networks today. More and more research has been done
related to the need for additional bandwidth to solve access
problems. Many of the performance enhancing solutions and
next generation standards, such as those commonly referred
to as 3.5G, LTE, 4G, and WiMAX, are focused on providing
increased bandwidth. Although partially addressed by the
standards, a key problem that remains is lack of bandwidth
on the signaling channel more so than the data channel and
the standard does not address battery life very well.

Embodiments of the disclosed technology includes, for
example, alignment of requests from multiple applications
to minimize the need for several polling requests; leverage
specific content types to determine how to proxy/manage a
connection/content; and applying specific heuristics associ-
ated with device, user behavioral patterns (how often they
interact with the device/application) and/or network param-
eters.

Embodiments of the present technology can further
include, moving recurring HTTP polls performed by various
widgets, RSS readers, etc., to remote network node (e.g.,
Network Operation Center (NOC)), thus considerably low-
ering device battery/power consumption, radio channel sig-
naling and bandwidth usage. Additionally, the offloading can
be performed transparently so that existing applications do
not need to be changed.

In some embodiments, this can be implemented using a
local proxy on the mobile device (e.g., any wireless device)
which automatically detects recurring requests for the same
content (RSS feed, Widget data set) that matches a specific
rule (e.g., happens every 15 minutes). The local proxy can
automatically cache the content on the mobile device while
delegating the polling to the server (e.g., a proxy server
operated as an element of a communications network). The
server can then notify the mobile/client proxy if the content
changes, and if content has not changed (or not changed
sufficiently, or in an identified manner or amount) the mobile
proxy provides the latest version in its cache to the user
(without need to utilize the radio at all). This way the mobile
or wireless device (e.g., a mobile phone, smart phone, M2M
module/MODEM, or any other wireless devices, etc.) does
not need to open (e.g., thus powering on the radio) or use a
data connection if the request is for content that is monitored
and that has been not flagged as new/changed.

10

15

20

25

30

35

40

45

50

55

60

65

8

The logic for automatically adding content sources/appli-
cation servers (e.g., including URLs/content) to be moni-
tored can also check for various factors like how often the
content is the same, how often the same request is made (is
there a fixed interval/pattern?), which application is request-
ing the data, etc. Similar rules to decide between using the
cache and request the data from the original source may also
be implemented and executed by the local proxy and/or
server.

For example, when the request comes at an unscheduled/
unexpected time (user initiated check), or after every (n)
consecutive times the response has been provided from the
cache, etc., or if the application is running in the background
vs. in a more interactive mode of the foreground. As more
and more mobile applications or wireless enabled applica-
tions base their features on resources available in the net-
work, this becomes increasingly important. In addition, the
disclosed technology allows elimination of unnecessary
chatter from the network, benefiting the operators trying to
optimize the wireless spectrum usage.

Traffic Categorization and Policy

In some embodiments, the disclosed proxy system is able
to establish policies for choosing traffic (data, content,
messages, updates, etc.) to cache and/or shape. Additionally,
by combining information from observing the application
making the network requests, getting explicit information
from the application, or knowing the network destination the
application is reaching, the disclosed technology can deter-
mine or infer what category the transmitted traffic belongs
to.

For example, in one embodiment, mobile or wireless
traffic can be categorized as: (al) interactive traffic or (a2)
background traffic. The difference is that in (al) a user is
actively waiting for a response, while in (2) a user is not
expecting a response. This categorization can be used in
conjunction with or in lieu of a second type of categorization
of traffic: (b1) immediate, (b2) low priority, (b3) immediate
if the requesting application is in the foreground and active.

For example, a new update, message or email may be in
the (b1) category to be delivered immediately, but it still is
(a2) background traffic—a user is not actively waiting for it.
A similar categorization applies to instant messages when
they come outside of an active chat session. During an active
chat session a user is expecting a response faster. Such user
expectations are determined or inferred and factored into
when optimizing network use and device resources in per-
forming traffic categorization and policy implementation.

Some examples of the applications of the described
categorization scheme, include the following: (al) interac-
tive traffic can be categorized as (b1) immediate—but (a2)
background traffic may also be (b2) or (b3). An example of
a low priority transfer is email or message maintenance
transaction such as deleting email or other messages or
marking email as read at the mail or application server. Such
a transfer can typically occur at the earlier of (a) timer
exceeding a timeout value (for example, 2 minutes), and (b)
data being sent for other purposes.

An example of (b3) is IM presence updates, stock ticker
updates, weather updates, status updates, news feeds. When
the UI of the application is in the foreground and/or active
(for example, as indicated by the backlight of the device/
phone being lit or as determined or inferred from the status
of other sensors), updates can be considered immediate
whenever server has something to push to the device. When
the application is not in the foreground or not active, such
updates can be suppressed until the application comes to
foreground and is active.

US 9,432,486 B2

9

With some embodiments, networks can be selected or
optimized simultaneously for (al) interactive traffic and (a2)
background traffic.

In some embodiments, as the wireless device or mobile
device proxy (separately or in conjunction with the server
proxy) is able to categorize the traffic as (for example) (al)
interactive traffic or (a2) background traffic, it can apply
different policies to different types of traffic. This means that
it can internally operate differently for (al) and (a2) traffic
(for example, by allowing interactive traffic to go through to
the network in whole or in part, and apply stricter traffic
control to background traffic; or the device side only allows
a request to activate the radio if it has received information
from the server that the content at the host has been updated,
etc.).

When the request does require access over the wireless
network, the disclosed technology can request the radio
layer to apply different network configurations to different
traffic. Depending on the type of traffic and network this may
be achieved by different means:

(1) Using 3G/4G for (al) and 2G/2.5G for (a2);

(2) Explicitly specifying network configuration for dif-
ferent data sets (e.g. in terms of use of FACH (forward
access channel) vs. DCH (dedicated channel), or otherwise
requesting lower/more network efficient data rates for back-
ground traffic); or

(3) Utilizing different network access points for different
data sets (access points which would be configured to use
network resources differently similar to (1) and (2) above).

Additionally, 3GPP Fast Dormancy calls for improve-
ments so that applications, operating systems or the mobile
device would have awareness of the traffic type to be more
efficient in the future. Embodiments of the disclosed system,
having the knowledge of the traffic category and being able
to utilize Fast Dormancy appropriately may solve the prob-
lem identified in Fast Dormancy. This way the mobile or
broadband network does not need to be configured with a
compromised configuration that adversely impacts both bat-
tery consumption and network signaling resources.

Polling Schedule

Detecting (or determining) a polling schedule allows the
proxy server (server-side of the distributed cache system) to
be as close as possible with its polls to the application polls.
Many applications employ scheduled interval polling (e.g.,
every 4 hours or every 30 seconds, at another time interval).
The client side proxy can detect automatic polls based on
time measurements and create a automatic polling profile for
an application. As an example, the local proxy attempts to
detect the time interval between requests and after 2, 3, 4, or
more polls, determines an automatic rate if the time intervals
are all within 1 second (or another measure of relative
closeness) of each other. If not, the client may collect data
from a greater number of polling events (e.g., 10-12 polls)
and apply a statistical analysis to determine, compute, or
estimate a value for the average interval that is used. The
polling profile is delivered to the server where it is used. If
it is a frequent manual request, the locally proxy can
substitute it with a default interval for this application taken
from a profile for non-critical applications.

In some embodiments, the local proxy (e.g., device side
proxy) may keep monitoring the application/client polls and
update the polling interval. If it changes by more than 30%
(or another predetermined/dynamic/conditional value) from
the current value, it is communicated to the proxy server
(e.g., server-side proxy). This approach can be referred to as
the scenario of “lost interest.” In some instances, the local

40

45

55

60

10

proxy can recognize requests made outside of this schedule,
consider them “manual,” and treat them accordingly.
Application Classes/Modes of Caching

In some embodiments, applications can be organized into
three groups or modes of caching. Each mobile client/
application can be categorized to be treated as one of these
modes, or treated using multiple modes, depending on one
or more conditions.

A) Fully cached—Ilocal proxy updates (e.g., sends appli-
cation requests directly over the network to be serviced by
the application server/content host) only when the proxy
server tells the local proxy to update. In this mode, the local
proxy can ignore manual requests and the proxy server uses
the detected automatic profile (e.g., sports score applets,
Facebook, every 10, 15, 30, or more polls) to poll the
application server/content provider.

B) Partially cached—the local proxy uses the local or
internal cache for automatic requests (e.g., application auto-
matic refreshes), other scheduled requests but passes
through some manual requests (e.g., email download, Ebay
or some Facebook requests); and

C) Never cached (e.g., real-time stock ticker, sports
scores/statuses; however, in some instances, 15 minutes
delayed quotes can be safely placed on 30 seconds sched-
ules—B or even A).

The actual application or caching mode classification can
be determined based on the rate of content change and
critical character of data. Unclassified applications by
default can be set as class C.

Backlight and Active Applications

In some embodiments, the local proxy starts by detecting
the device backlight status. Requests made with the screen
light ‘off” can be allowed to use the local cache if a request
with identical signature is registered with the proxy server,
which is polling the original host server/content server(s) to
which the requests are directed. If the screen light is ‘on’,
further detection can be made to determine whether it is a
background application or for other indicators that local
cache entries can or cannot be used to satisfy the request.
When identified, the requests for which local entries can be
used may be processed identically to the screen light off
situation. Foreground requests can use the aforementioned
application classification to assess when cached data is safe
to use to process requests.

FIG. 1A illustrates an example diagram of a system where
a host server 100 facilitates management of traffic, content
caching, and/or resource conservation between mobile
devices (e.g., wireless devices 150), and an application
server or content provider 110, or other servers such as an ad
server 120A, promotional content server 120B, or an e-cou-
pon server 120C in a wireless network (or broadband
network) for resource conservation. The host server can
further facilitate selective data compression for the reduction
of mobile data traffic and signaling traffic.

The client devices 150 can be any system and/or device,
and/or any combination of devices/systems that is able to
establish a connection, including wired, wireless, cellular
connections with another device, a server and/or other
systems such as host server 100 and/or application server/
content provider 110. Client devices 150 will typically
include a display and/or other output functionalities to
present information and data exchanged between among the
devices 150 and/or the host server 100 and/or application
server/content provider 110. The application server/content
provider 110 can by any server including third party servers
or service/content providers further including advertise-
ment, promotional content, publication, or electronic coupon

US 9,432,486 B2

11

servers or services. Similarly, separate advertisement servers
120A, promotional content servers 120B, and/or e-Coupon
servers 120C as application servers or content providers are
illustrated by way of example.

For example, the client devices 150 can include mobile,
hand held or portable devices, wireless devices, or non-
portable devices and can be any of, but not limited to, a
server desktop, a desktop computer, a computer cluster, or
portable devices, including a notebook, a laptop computer, a
handheld computer, a palmtop computer, a mobile phone, a
cell phone, a smart phone, a PDA, a Blackberry device, a
Palm device, a handheld tablet (e.g., an iPad or any other
tablet), a hand held console, a hand held gaming device or
console, any SuperPhone such as the iPhone, and/or any
other portable, mobile, hand held devices, or fixed wireless
interface such as a M2M device, etc. In one embodiment, the
client devices 150, host server 100, and application server
110 are coupled via a network 106 and/or a network 108. In
some embodiments, the devices 150 and host server 100
may be directly connected to one another.

The input mechanism on client devices 150 can include
touch screen keypad (including single touch, multi-touch,
gesture sensing in 2D or 3D, etc.), a physical keypad, a
mouse, a pointer, a track pad, motion detector (e.g., includ-
ing 1-axis, 2-axis, 3-axis accelerometer, etc.), a light sensor,
capacitance sensor, resistance sensor, temperature sensor,
proximity sensor, a piezoelectric device, device orientation
detector (e.g., electronic compass, tilt sensor, rotation sen-
sor, gyroscope, accelerometer), or a combination of the
above.

Signals received or detected indicating user activity at
client devices 150 through one or more of the above input
mechanism, or others, can be used in the disclosed technol-
ogy in acquiring context awareness at the client device 150.
Context awareness at client devices 150 generally includes,
by way of example but not limitation, client device 150
operation or state acknowledgement, management, user
activity/behavior/interaction awareness, detection, sensing,
tracking, trending, and/or application (e.g., mobile applica-
tions) type, behavior, activity, operating state, etc.

Context awareness in the present disclosure also includes
knowledge and detection of network side contextual data
and can include network information such as network capac-
ity, bandwidth, traffic, type of network/connectivity, and/or
any other operational state data. Network side contextual
data can be received from and/or queried from network
service providers (e.g., cell provider 112 and/or Internet
service providers) of the network 106 and/or network 108
(e.g., by the host server and/or devices 150). In addition to
application context awareness as determined from the client
150 side, the application context awareness may also be
received from or obtained/queried from the respective appli-
cation/service providers 110 (by the host 100 and/or client
devices 150).

The host server 100 can use, for example, contextual
information obtained for client devices 150, networks 106/
108, applications (e.g., mobile applications), application
server/provider 110, or any combination of the above, to
manage the traffic in the system to satisfy data needs of the
client devices 150 (e.g., to satisfy application or any other
request including HTTP request). In one embodiment, the
traffic is managed by the host server 100 to satisfy data
requests made in response to explicit or non-explicit user
103 requests and/or device/application maintenance tasks.
The traffic can be managed such that network consumption,
for example, use of the cellular network is conserved for
effective and efficient bandwidth utilization. In addition, the

10

15

20

25

30

35

40

45

50

55

60

65

12

host server 100 can manage and coordinate such traffic in the
system such that use of device 150 side resources (e.g.,
including but not limited to battery power consumption,
radio use, processor/memory use) are optimized with a
general philosophy for resource conservation while still
optimizing performance and user experience.

For example, in context of battery conservation, the
device 150 can observe user activity (for example, by
observing user keystrokes, backlight status, or other signals
via one or more input mechanisms, etc.) and alters device
150 behaviors. The device 150 can also request the host
server 100 to alter the behavior for network resource con-
sumption based on user activity or behavior.

In one embodiment, the traffic management for resource
conservation is performed using a distributed system
between the host server 100 and client device 150. The
distributed system can include proxy server and cache
components on the server side 100 and on the device/client
side, for example, as shown by the server cache 135 on the
server 100 side and the local cache 185 on the client 150
side.

Functions and techniques disclosed for context aware
traffic management for resource conservation in networks
(e.g., network 106 and/or 108) and devices 150, reside in a
distributed proxy and cache system. The proxy and cache
system can be distributed between, and reside on, a given
client device 150 in part or in whole and/or host server 100
in part or in whole. The distributed proxy and cache system
are illustrated with further reference to the example diagram
shown in FIG. 1B. Functions and techniques performed by
the proxy and cache components in the client device 150, the
host server 100, and the related components therein are
described, respectively, in detail with further reference to the
examples of FIGS. 2-3.

In one embodiment, client devices 150 communicate with
the host server 100 and/or the application server 110 over
network 106, which can be a cellular network and/or a
broadband network. To facilitate overall traffic management
between devices 150 and various application servers/content
providers 110 to implement network (bandwidth utilization)
and device resource (e.g., battery consumption), the host
server 100 can communicate with the application server/
providers 110 over the network 108, which can include the
Internet (e.g., a broadband network).

In general, the networks 106 and/or 108, over which the
client devices 150, the host server 100, and/or application
server 110 communicate, may be a cellular network, a
broadband network, a telephonic network, an open network,
such as the Internet, or a private network, such as an intranet
and/or the extranet, or any combination thereof. For
example, the Internet can provide file transfer, remote log in,
email, news, RSS, cloud-based services, instant messaging,
visual voicemail, push mail, VoIP, and other services
through any known or convenient protocol, such as, but is
not limited to the TCP/IP protocol, UDP, HTTP, DNS, FTP,
UPnP, NSF, ISDN, PDH, RS-232, SDH, SONET, etc.

The networks 106 and/or 108 can be any collection of
distinct networks operating wholly or partially in conjunc-
tion to provide connectivity to the client devices 150 and the
host server 100 and may appear as one or more networks to
the serviced systems and devices. In one embodiment,
communications to and from the client devices 150 can be
achieved by, an open network, such as the Internet, or a
private network, broadband network, such as an intranet
and/or the extranet. In one embodiment, communications

US 9,432,486 B2

13

can be achieved by a secure communications protocol, such
as secure sockets layer (SSL), or transport layer security
(TLS).

In addition, communications can be achieved via one or
more networks, such as, but are not limited to, one or more
of WiMax, a Local Area Network (LAN), Wireless Local
Area Network (WLAN), a Personal area network (PAN), a
Campus area network (CAN), a Metropolitan area network
(MAN), a Wide area network (WAN), a Wireless wide area
network (WWAN), or any broadband network, and further
enabled with technologies such as, by way of example,
Global System for Mobile Communications (GSM), Per-
sonal Communications Service (PCS), Bluetooth, WiFi,
Fixed Wireless Data, 2G, 2.5G, 3G, 4G, IMT-Advanced,
pre-4G, LTE Advanced, mobile WiMax, WiMax 2, Wire-
lessMAN-Advanced networks, enhanced data rates for GSM
evolution (EDGE), General packet radio service (GPRS),
enhanced GPRS, iBurst, UMTS, HSPDA, HSUPA, HSPA,
UMTS-TDD, 1xRTT, EV-DO, messaging protocols such as,
TCP/IP, SMS, MMS, extensible messaging and presence
protocol (XMPP), real time messaging protocol (RTMP),
instant messaging and presence protocol (IMPP), instant
messaging, USSD, IRC, or any other wireless data networks,
broadband networks, or messaging protocols.

FIG. 1B illustrates an example diagram of a proxy and
cache system distributed between the host server 100 and
device 150 which facilitates network traffic management
between the device 150 and an application server or content
provider 110, or other servers such as an ad server 120A,
promotional content server 120B, or an e-coupon server
120C for resource conservation and content caching. The
proxy system distributed among the host server 100 and the
device 150 can further facilitate selective data compression
for the reduction of mobile data traffic and signaling traffic.

The distributed proxy and cache system can include, for
example, the proxy server 125 (e.g., remote proxy) and the
server cache, 135 components on the server side. The
server-side proxy 125 and cache 135 can, as illustrated,
reside internal to the host server 100. In addition, the proxy
server 125 and cache 135 on the server-side can be partially
or wholly external to the host server 100 and in communi-
cation via one or more of the networks 106 and 108. For
example, the proxy server 125 may be external to the host
server and the server cache 135 may be maintained at the
host server 100. Alternatively, the proxy server 125 may be
within the host server 100 while the server cache is external
to the host server 100. In addition, each of the proxy server
125 and the cache 135 may be partially internal to the host
server 100 and partially external to the host server 100. The
application server/content provider 110 can by any server
including third party servers or service/content providers
further including advertisement, promotional content, pub-
lication, or electronic coupon servers or services. Similarly,
separate advertisement servers 120A, promotional content
servers 120B, and/or e-Coupon servers 120C as application
servers or content providers are illustrated by way of
example.

The distributed system can also, include, in one embodi-
ment, client-side components, including by way of example
but not limitation, a local proxy 175 (e.g., a mobile client on
a mobile device) and/or a local cache 185, which can, as
illustrated, reside internal to the device 150 (e.g., a mobile
device).

In addition, the client-side proxy 175 and local cache 185
can be partially or wholly external to the device 150 and in
communication via one or more of the networks 106 and
108. For example, the local proxy 175 may be external to the

10

15

20

25

30

35

40

45

50

55

60

65

14

device 150 and the local cache 185 may be maintained at the
device 150. Alternatively, the local proxy 175 may be within
the device 150 while the local cache 185 is external to the
device 150. In addition, each of the proxy 175 and the cache
185 may be partially internal to the host server 100 and
partially external to the host server 100.

In one embodiment, the distributed system can include an
optional caching proxy server 199. The caching proxy server
199 can be a component which is operated by the application
server/content provider 110, the host server 100, or a net-
work service provider 112, and or any combination of the
above to facilitate network traffic management for network
and device resource conservation. Proxy server 199 can be
used, for example, for caching content to be provided to the
device 150, for example, from one or more of, the applica-
tion server/provider 110, host server 100, and/or a network
service provider 112. Content caching can also be entirely or
partially performed by the remote proxy 125 to satisfy
application requests or other data requests at the device 150.

In context aware traffic management and optimization for
resource conservation in a network (e.g., cellular or other
wireless networks), characteristics of user activity/behavior
and/or application behavior at a mobile device (e.g., any
wireless device) 150 can be tracked by the local proxy 175
and communicated, over the network 106 to the proxy server
125 component in the host server 100, for example, as
connection metadata. The proxy server 125 which in turn is
coupled to the application server/provider 110 provides
content and data to satisfy requests made at the device 150.

In addition, the local proxy 175 can identify and retrieve
mobile device properties, including one or more of, battery
level, network that the device is registered on, radio state, or
whether the mobile device is being used (e.g., interacted
with by a user). In some instances, the local proxy 175 can
delay, expedite (prefetch), and/or modify data prior to trans-
mission to the proxy server 125, when appropriate, as will be
further detailed with references to the description associated
with the examples of FIGS. 2-3.

The local database 185 can be included in the local proxy
175 or coupled to the local proxy 175 and can be queried for
a locally stored response to the data request prior to the data
request being forwarded on to the proxy server 125. Locally
cached responses can be used by the local proxy 175 to
satisfy certain application requests of the mobile device 150,
by retrieving cached content stored in the cache storage 185,
when the cached content is still valid.

Similarly, the proxy server 125 of the host server 100 can
also delay, expedite, or modify data from the local proxy
prior to transmission to the content sources (e.g., the appli-
cation server/content provider 110). In addition, the proxy
server 125 uses device properties and connection metadata
to generate rules for satisfying request of applications on the
mobile device 150. The proxy server 125 can gather real
time traffic information about requests of applications for
later use in optimizing similar connections with the mobile
device 150 or other mobile devices.

In general, the local proxy 175 and the proxy server 125
are transparent to the multiple applications executing on the
mobile device. The local proxy 175 is generally transparent
to the operating system or platform of the mobile device and
may or may not be specific to device manufacturers. In some
instances, the local proxy 175 is optionally customizable in
part or in whole to be device specific. In some embodiments,
the local proxy 175 may be bundled into a wireless model,
a firewall, and/or a router.

In one embodiment, the host server 100 can in some
instances, utilize the store and forward functions of a short

US 9,432,486 B2

15

message service center (SMSC) 112, such as that provided
by the network service provider, in communicating with the
device 150 in achieving network traffic management. Note
that 112 can also utilize any other type of alternative channel
including USSD or other network control mechanisms. As
will be further described with reference to the example of
FIG. 3, the host server 100 can forward content or HTTP
responses to the SMSC 112 such that it is automatically
forwarded to the device 150 if available, and for subsequent
forwarding if the device 150 is not currently available.

In general, the disclosed distributed proxy and cache
system allows optimization of network usage, for example,
by serving requests from the local cache 185, the local proxy
175 reduces the number of requests that need to be satisfied
over the network 106. Further, the local proxy 175 and the
proxy server 125 may filter irrelevant data from the com-
municated data. In addition, the local proxy 175 and the
proxy server 125 can also accumulate low priority data and
send it in batches to avoid the protocol overhead of sending
individual data fragments. The local proxy 175 and the
proxy server 125 can also compress or transcode the traffic,
reducing the amount of data sent over the network 106
and/or 108. The signaling traffic in the network 106 and/or
108 can be reduced, as the networks are now used less often
and the network traffic can be synchronized among indi-
vidual applications.

With respect to the battery life of the mobile device 150,
by serving application or content requests from the local
cache 185, the local proxy 175 can reduce the number of
times the radio module is powered up. The local proxy 175
and the proxy server 125 can work in conjunction to
accumulate low priority data and send it in batches to reduce
the number of times and/or amount of time when the radio
is powered up. The local proxy 175 can synchronize the
network use by performing the batched data transfer for all
connections simultaneously.

FIG. 2A depicts a block diagram illustrating an example
of client-side components in a distributed proxy and cache
system residing on a mobile device (e.g., wireless device)
250 that manages traffic in a wireless network (or broadband
network) for resource conservation, content caching, and/or
traffic management. The client-side proxy (or local proxy
275) can further categorize mobile traffic and/or implement
delivery policies based on application behavior, content
priority, user activity, and/or user expectations.

The device 250, which can be a portable or mobile device
(e.g., any wireless device), such as a portable phone, gen-
erally includes, for example, a network interface 208 an
operating system 204, a context API 206, and mobile
applications which may be proxy-unaware 210 or proxy-
aware 220. Note that the device 250 is specifically illustrated
in the example of FIG. 2 as a mobile device, such is not a
limitation and that device 250 may be any wireless, broad-
band, portable/mobile or non-portable device able to
receive, transmit signals to satisfy data requests over a
network including wired or wireless networks (e.g., WiFi,
cellular, Bluetooth, LAN, WAN, etc.).

The network interface 208 can be a networking module
that enables the device 250 to mediate data in a network with
an entity that is external to the host server 250, through any
known and/or convenient communications protocol sup-
ported by the host and the external entity. The network
interface 208 can include one or more of a network adaptor
card, a wireless network interface card (e.g., SMS interface,
WiFi interface, interfaces for various generations of mobile
communication standards including but not limited to 2G,
3G, 3.5G, 4G, LTE, etc.), Bluetooth, or whether or not the

5

10

15

20

25

30

35

40

45

50

55

60

65

16

connection is via a router, an access point, a wireless router,
a switch, a multilayer switch, a protocol converter, a gate-
way, a bridge, a bridge router, a hub, a digital media receiver,
and/or a repeater.

Device 250 can further include, client-side components of
the distributed proxy and cache system which can include,
a local proxy 275 (e.g., a mobile client of a mobile device)
and a cache 285. In one embodiment, the local proxy 275
includes a user activity module 215, a proxy API 225, a
request/transaction manager 235, a caching policy manager
245 having an application protocol module 248, a traffic
shaping engine 255, and/or a connection manager 265. The
traffic shaping engine 255 may further include an alignment
module 256 and/or a batching module 257, the connection
manager 265 may further include a radio controller 266. The
request/transaction manager 235 can further include an
application behavior detector 236 and/or a prioritization
engine 241, the application behavior detector 236 may
further include a pattern detector 237 and/or and application
profile generator 239. Additional or less components/mod-
ules/engines can be included in the local proxy 275 and each
illustrated component.

As used herein, a “module,” “a manager,” a “handler,” a
“detector,” an “interface,” a “controller,” a “normalizer,” a
“generator,” an “invalidator,” or an “engine” includes a
general purpose, dedicated or shared processor and, typi-
cally, firmware or software modules that are executed by the
processor. Depending upon implementation-specific or other
considerations, the module, manager, handler, detector,
interface, controller, normalizer, generator, invalidator, or
engine can be centralized or its functionality distributed. The
module, manager, handler, detector, interface, controller,
normalizer, generator, invalidator, or engine can include
general or special purpose hardware, firmware, or software
embodied in a computer-readable (storage) medium for
execution by the processor.

As used herein, a computer-readable medium or com-
puter-readable storage medium is intended to include all
mediums that are statutory (e.g., in the United States, under
35 U.S.C. §101), and to specifically exclude all mediums
that are non-statutory in nature to the extent that the exclu-
sion is necessary for a claim that includes the computer-
readable (storage) medium to be valid. Known statutory
computer-readable mediums include hardware (e.g., regis-
ters, random access memory (RAM), non-volatile (NV)
storage, to name a few), but may or may not be limited to
hardware.

In one embodiment, a portion of the distributed proxy and
cache system for network traffic management resides in or is
in communication with device 250, including local proxy
275 (mobile client) and/or cache 285. The local proxy 275
can provide an interface on the device 250 for users to access
device applications and services including email, IM, voice
mail, visual voicemail, feeds, Internet, games, productivity
tools, or other applications, etc.

The proxy 275 is generally application independent and
can be used by applications (e.g., both proxy-aware and
proxy-unaware applications 210 and 220 and other mobile
applications) to open TCP connections to a remote server
(e.g., the server 100 in the examples of FIGS. 1A-1B and/or
server proxy 125/325 shown in the examples of FIG. 1B and
FIG. 3A). In some instances, the local proxy 275 includes a
proxy API 225 which can be optionally used to interface
with proxy-aware applications 220 (or applications (e.g.,
mobile applications) on a mobile device (e.g., any wireless
device)).

29 <

US 9,432,486 B2

17

The applications 210 and 220 can generally include any
user application, widgets, software, HT'TP-based applica-
tion, web browsers, video or other multimedia streaming or
downloading application, video games, social network
applications, email clients, RSS management applications,
application stores, document management applications, pro-
ductivity enhancement applications, etc. The applications
can be provided with the device OS, by the device manu-
facturer, by the network service provider, downloaded by the
user, or provided by others.

One embodiment of the local proxy 275 includes or is
coupled to a context API 206, as shown. The context API
206 may be a part of the operating system 204 or device
platform or independent of the operating system 204, as
illustrated. The operating system 204 can include any oper-
ating system including but not limited to, any previous,
current, and/or future versions/releases of, Windows Mobile,
i08S, Android, Symbian, Palm OS, Brew MP, Java 2 Micro
Edition (J2ME), Blackberry, etc.

The context API 206 may be a plug-in to the operating
system 204 or a particular client/application on the device
250. The context API 206 can detect signals indicative of
user or device activity, for example, sensing motion, gesture,
device location, changes in device location, device back-
light, keystrokes, clicks, activated touch screen, mouse click
or detection of other pointer devices. The context API 206
can be coupled to input devices or sensors on the device 250
to identify these signals. Such signals can generally include
input received in response to explicit user input at an input
device/mechanism at the device 250 and/or collected from
ambient signals/contextual cues detected at or in the vicinity
of the device 250 (e.g., light, motion, piezoelectric, etc.).

In one embodiment, the user activity module 215 interacts
with the context API 206 to identify, determine, infer, detect,
compute, predict, and/or anticipate, characteristics of user
activity on the device 250. Various inputs collected by the
context API 206 can be aggregated by the user activity
module 215 to generate a profile for characteristics of user
activity. Such a profile can be generated by the user activity
module 215 with various temporal characteristics. For
instance, user activity profile can be generated in real-time
for a given instant to provide a view of what the user is doing
or not doing at a given time (e.g., defined by a time window,
in the last minute, in the last 30 seconds, etc.), a user activity
profile can also be generated for a ‘session’ defined by an
application or web page that describes the characteristics of
user behavior with respect to a specific task they are engaged
in on the device 250, or for a specific time period (e.g., for
the last 2 hours, for the last 5 hours).

Additionally, characteristic profiles can be generated by
the user activity module 215 to depict a historical trend for
user activity and behavior (e.g., 1 week, 1 mo., 2 mo., etc.).
Such historical profiles can also be used to deduce trends of
user behavior, for example, access frequency at different
times of day, trends for certain days of the week (weekends
or week days), user activity trends based on location data
(e.g., IP address, GPS, or cell tower coordinate data) or
changes in location data (e.g., user activity based on user
location, or user activity based on whether the user is on the
go, or traveling outside a home region, etc.) to obtain user
activity characteristics.

In one embodiment, user activity module 215 can detect
and track user activity with respect to applications, docu-
ments, files, windows, icons, and folders on the device 250.
For example, the user activity module 215 can detect when
an application or window (e.g., a web browser or any other
type of application) has been exited, closed, minimized,

10

35

40

45

18

maximized, opened, moved into the foreground, or into the
background, multimedia content playback, etc.

In one embodiment, characteristics of the user activity on
the device 250 can be used to locally adjust behavior of the
device (e.g., mobile device or any wireless device) to
optimize its resource consumption such as battery/power
consumption and more generally, consumption of other
device resources including memory, storage, and processing
power. In one embodiment, the use of a radio on a device can
be adjusted based on characteristics of user behavior (e.g.,
by the radio controller 266 of the connection manager 265)
coupled to the user activity module 215. For example, the
radio controller 266 can turn the radio on or off, based on
characteristics of the user activity on the device 250. In
addition, the radio controller 266 can adjust the power mode
of the radio (e.g., to be in a higher power mode or lower
power mode) depending on characteristics of user activity.

In one embodiment, characteristics of the user activity on
device 250 can also be used to cause another device (e.g.,
other computers, a mobile device, a wireless device, or a
non-portable device) or server (e.g., host server 100 and 300
in the examples of FIGS. 1A-B and FIG. 3A) which can
communicate (e.g., via a cellular or other network) with the
device 250 to modify its communication frequency with the
device 250. The local proxy 275 can use the characteristics
information of user behavior determined by the user activity
module 215 to instruct the remote device as to how to
modulate its communication frequency (e.g., decreasing
communication frequency, such as data push frequency if
the user is idle, requesting that the remote device notify the
device 250 if new data, changed, data, or data of a certain
level of importance becomes available, etc.).

In one embodiment, the user activity module 215 can, in
response to determining that user activity characteristics
indicate that a user is active after a period of inactivity,
request that a remote device (e.g., server host server 100 and
300 in the examples of FIGS. 1A-B and FIG. 3A) send the
data that was buffered as a result of the previously decreased
communication frequency.

In addition, or in alternative, the local proxy 275 can
communicate the characteristics of user activity at the device
250 to the remote device (e.g., host server 100 and 300 in the
examples of FIGS. 1A-B and FIG. 3A) and the remote
device determines how to alter its own communication
frequency with the device 250 for network resource conser-
vation and conservation of device 250 resources.

One embodiment of the local proxy 275 further includes
a request/transaction manager 235, which can detect, iden-
tify, intercept, process, manage, data requests initiated on the
device 250, for example, by applications 210 and/or 220,
and/or directly/indirectly by a user request. The request/
transaction manager 235 can determine how and when to
process a given request or transaction, or a set of requests/
transactions, based on transaction characteristics.

The request/transaction manager 235 can prioritize
requests or transactions made by applications and/or users at
the device 250, for example by the prioritization engine 241.
Importance or priority of requests/transactions can be deter-
mined by the request/transaction manager 235 by applying
a rule set, for example, according to time sensitivity of the
transaction, time sensitivity of the content in the transaction,
time criticality of the transaction, time criticality of the data
transmitted in the transaction, and/or time criticality or
importance of an application making the request.

In addition, transaction characteristics can also depend on
whether the transaction was a result of user-interaction or
other user-initiated action on the device (e.g., user interac-

US 9,432,486 B2

19

tion with a application (e.g., a mobile application)). In
general, a time critical transaction can include a transaction
resulting from a user-initiated data transfer, and can be
prioritized as such. Transaction characteristics can also
depend on the amount of data that will be transferred or is
anticipated to be transferred as a result of the requested
transaction. For example, the connection manager 265, can
adjust the radio mode (e.g., high power or low power mode
via the radio controller 266) based on the amount of data that
will need to be transferred.

In addition, the radio controller 266/connection manager
265 can adjust the radio power mode (high or low) based on
time criticality/sensitivity of the transaction. The radio con-
troller 266 can trigger the use of high power radio mode
when a time-critical transaction (e.g., a transaction resulting
from a user-initiated data transfer, an application running in
the foreground, any other event meeting a certain criteria) is
initiated or detected.

In general, the priorities can be set by default, for
example, based on device platform, device manufacturer,
operating system, etc. Priorities can alternatively or in
additionally be set by the particular application; for
example, the Facebook application (e.g., a mobile applica-
tion) can set its own priorities for various transactions (e.g.,
a status update can be of higher priority than an add friend
request or a poke request, a message send request can be of
higher priority than a message delete request, for example),
an email client or IM chat client may have its own configu-
rations for priority. The prioritization engine 241 may
include set of rules for assigning priority.

The prioritization engine 241 can also track network
provider limitations or specifications on application or trans-
action priority in determining an overall priority status for a
request/transaction. Furthermore, priority can in part or in
whole be determined by user preferences, either explicit or
implicit. A user, can in general, set priorities at different tiers,
such as, specific priorities for sessions, or types, or appli-
cations (e.g., a browsing session, a gaming session, versus
an IM chat session, the user may set a gaming session to
always have higher priority than an IM chat session, which
may have higher priority than web-browsing session). A user
can set application-specific priorities, (e.g., a user may set
Facebook-related transactions to have a higher priority than
LinkedIn-related transactions), for specific transaction types
(e.g., for all send message requests across all applications to
have higher priority than message delete requests, for all
calendar-related events to have a high priority, etc.), and/or
for specific folders.

The prioritization engine 241 can track and resolve con-
flicts in priorities set by different entities. For example,
manual settings specified by the user may take precedence
over device OS settings, network provider parameters/limi-
tations (e.g., set in default for a network service area,
geographic locale, set for a specific time of day, or set based
on service/fee type) may limit any user-specified settings
and/or application-set priorities. In some instances, a manual
synchronization request received from a user can override
some, most, or all priority settings in that the requested
synchronization is performed when requested, regardless of
the individually assigned priority or an overall priority
ranking for the requested action.

Priority can be specified and tracked internally in any
known and/or convenient manner, including but not limited
to, a binary representation, a multi-valued representation, a
graded representation and all are considered to be within the
scope of the disclosed technology.

10

25

30

35

40

45

50

55

20
TABLE I
Change Change
(initiated on device) Priority (initiated on server) Priority
Send email High Receive email High
Delete email Low Edit email Often not
possible to
sync (Low if
possible)
(Un)read email Low
Move message Low New email in deleted Low
items
Read more High
Download High Delete an email Low
attachment (Un)Read an email Low
New Calendar event High Move messages Low
Edit/change High Any calendar change High
Calendar event Any contact change High
Add a contact High Wipe/lock device High
Edit a contact High Settings change High
Search contacts High Any folder change High
Change a setting High Connector restart High (if no
changes nothing
is sent)
Manual send/receive High
IM status change Medium Social Network Medium
Status Updates
Auction outbid or High Severe Weather Alerts High
change notification
Weather Updates Low News Updates Low

Table 1 above shows, for illustration purposes, some
examples of transactions with examples of assigned priori-
ties in a binary representation scheme. Additional assign-
ments are possible for additional types of events, requests,
transactions, and as previously described, priority assign-
ments can be made at more or less granular levels, e.g., at the
session level or at the application level, etc.

As shown by way of example in the above table, in
general, lower priority requests/transactions can include,
updating message status as being read, unread, deleting of
messages, deletion of contacts; higher priority requests/
transactions, can in some instances include, status updates,
new IM chat message, new email, calendar event update/
cancellation/deletion, an event in a mobile gaming session,
or other entertainment related events, a purchase confirma-
tion through a web purchase or online, request to load
additional or download content, contact book related events,
a transaction to change a device setting, location-aware or
location-based events/transactions, or any other events/re-
quest/transactions initiated by a user or where the user is
known to be, expected to be, or suspected to be waiting for
a response, etc.

Inbox pruning events (e.g., email, or any other types of
messages), are generally considered low priority and absent
other impending events, generally will not trigger use of the
radio on the device 250. Specifically, pruning events to
remove old email or other content can be ‘piggy backed’
with other communications if the radio is not otherwise on,
at the time of a scheduled pruning event. For example, if the
user has preferences set to ‘keep messages for 7 days old,”
then instead of powering on the device radio to initiate a
message delete from the device 250 the moment that the
message has exceeded 7 days old, the message is deleted
when the radio is powered on next. If the radio is already on,
then pruning may occur as regularly scheduled.

The request/transaction manager 235, can use the priori-
ties for requests (e.g., by the prioritization engine 241) to
manage outgoing traffic from the device 250 for resource
optimization (e.g., to utilize the device radio more efficiently
for battery conservation). For example, transactions/requests

US 9,432,486 B2

21

below a certain priority ranking may not trigger use of the
radio on the device 250 if the radio is not already switched
on, as controlled by the connection manager 265. In contrast,
the radio controller 266 can turn on the radio such a request
can be sent when a request for a transaction is detected to be
over a certain priority level.

In one embodiment, priority assignments (such as that
determined by the local proxy 275 or another device/entity)
can be used cause a remote device to modify its communi-
cation with the frequency with the mobile device or wireless
device. For example, the remote device can be configured to
send notifications to the device 250 when data of higher
importance is available to be sent to the mobile device or
wireless device.

In one embodiment, transaction priority can be used in
conjunction with characteristics of user activity in shaping
or managing traffic, for example, by the traffic shaping
engine 255. For example, the traffic shaping engine 255 can,
in response to detecting that a user is dormant or inactive,
wait to send low priority transactions from the device 250,
for a period of time. In addition, the traffic shaping engine
255 can allow multiple low priority transactions to accumu-
late for batch transferring from the device 250 (e.g., via the
batching module 257). In one embodiment, the priorities can
be set, configured, or readjusted by a user. For example,
content depicted in Table I in the same or similar form can
be accessible in a user interface on the device 250 and for
example, used by the user to adjust or view the priorities.

The batching module 257 can initiate batch transfer based
on certain criteria. For example, batch transfer (e.g., of
multiple occurrences of events, some of which occurred at
different instances in time) may occur after a certain number
of'low priority events have been detected, or after an amount
of time elapsed after the first of the low priority event was
initiated. In addition, the batching module 257 can initiate
batch transfer of the cumulated low priority events when a
higher priority event is initiated or detected at the device
250. Batch transfer can otherwise be initiated when radio use
is triggered for another reason (e.g., to receive data from a
remote device such as host server 100 or 300). In one
embodiment, an impending pruning event (pruning of an
inbox), or any other low priority events, can be executed
when a batch transfer occurs.

In general, the batching capability can be disabled or
enabled at the event/transaction level, application level, or
session level, based on any one or combination of the
following: user configuration, device limitations/settings,
manufacturer specification, network provider parameters/
limitations, platform-specific limitations/settings, device OS
settings, etc. In one embodiment, batch transfer can be
initiated when an application/window/file is closed out,
exited, or moved into the background; users can optionally
be prompted before initiating a batch transfer; users can also
manually trigger batch transfers.

In one embodiment, the local proxy 275 locally adjusts
radio use on the device 250 by caching data in the cache 285.
When requests or transactions from the device 250 can be
satisfied by content stored in the cache 285, the radio
controller 266 need not activate the radio to send the request
to a remote entity (e.g., the host server 100, 300, as shown
in FIG. 1A and FIG. 3A or a content provider/application
server such as the server/provider 110 shown in the
examples of FIG. 1A and FIG. 1B). As such, the local proxy
275 can use the local cache 285 and the cache policy
manager 245 to locally store data for satisfying data requests

10

15

35

40

45

55

22

to eliminate or reduce the use of the device radio for
conservation of network resources and device battery con-
sumption.

In leveraging the local cache, once the request/transaction
manager 225 intercepts a data request by an application on
the device 250, the local repository 285 can be queried to
determine if there is any locally stored response, and also
determine whether the response is valid. When a valid
response is available in the local cache 285, the response can
be provided to the application on the device 250 without the
device 250 needing to access the cellular network or wire-
less broadband network.

If a valid response is not available, the local proxy 275 can
query a remote proxy (e.g., the server proxy 325 of FIG. 3A)
to determine whether a remotely stored response is valid. If
so, the remotely stored response (e.g., which may be stored
on the server cache 135 or optional caching server 199
shown in the example of FIG. 1B) can be provided to the
mobile device, possibly without the mobile device 250
needing to access the cellular network, thus relieving con-
sumption of network resources.

If a valid cache response is not available, or if cache
responses are unavailable for the intercepted data request,
the local proxy 275, for example, the caching policy man-
ager 245, can send the data request to a remote proxy (e.g.,
server proxy 325 of FIG. 3A) which forwards the data
request to a content source (e.g., application server/content
provider 110 of FIG. 1A) and a response from the content
source can be provided through the remote proxy, as will be
further described in the description associated with the
example host server 300 of FIG. 3A. The cache policy
manager 245 can manage or process requests that use a
variety of protocols, including but not limited to HTTP,
HTTPS, IMAP, POP, SMTP, XMPP, and/or ActiveSync. The
caching policy manager 245 can locally store responses for
data requests in the local database 285 as cache entries, for
subsequent use in satisfying same or similar data requests.

The caching policy manager 245 can request that the
remote proxy monitor responses for the data request and the
remote proxy can notify the device 250 when an unexpected
response to the data request is detected. In such an event, the
cache policy manager 245 can erase or replace the locally
stored response(s) on the device 250 when notified of the
unexpected response (e.g., new data, changed data, addi-
tional data, etc.) to the data request. In one embodiment, the
caching policy manager 245 is able to detect or identify the
protocol used for a specific request, including but not limited
to HTTP, HTTPS, IMAP, POP, SMTP, XMPP, and/or
ActiveSync. In one embodiment, application specific han-
dlers (e.g., via the application protocol module 246 of the
caching policy manager 245) on the local proxy 275 allows
for optimization of any protocol that can be port mapped to
a handler in the distributed proxy (e.g., port mapped on the
proxy server 325 in the example of FIG. 3A).

In one embodiment, the local proxy 275 notifies the
remote proxy such that the remote proxy can monitor
responses received for the data request from the content
source for changed results prior to returning the result to the
device 250, for example, when the data request to the
content source has yielded same results to be returned to the
mobile device. In general, the local proxy 275 can simulate
application server responses for applications on the device
250, using locally cached content. This can prevent utiliza-
tion of the cellular network for transactions where new/
changed data is not available, thus freeing up network
resources and preventing network congestion.

US 9,432,486 B2

23

In one embodiment, the local proxy 275 includes an
application behavior detector 236 to track, detect, observe,
monitor, applications (e.g., proxy-aware and/or unaware
applications 210 and 220) accessed or installed on the device
250. Application behaviors, or patterns in detected behaviors
(e.g., via the pattern detector 237) of one or more applica-
tions accessed on the device 250 can be used by the local
proxy 275 to optimize traffic in a wireless network needed
to satisfy the data needs of these applications.

For example, based on detected behavior of multiple
applications, the traffic shaping engine 255 can align content
requests made by at least some of the applications over the
network (wireless network) (e.g., via the alignment module
256). The alignment module 256 can delay or expedite some
earlier received requests to achieve alignment. When
requests are aligned, the traffic shaping engine 255 can
utilize the connection manager to poll over the network to
satisfy application data requests. Content requests for mul-
tiple applications can be aligned based on behavior patterns
or rules/settings including, for example, content types
requested by the multiple applications (audio, video, text,
etc.), device (e.g., mobile or wireless device) parameters,
and/or network parameters/traffic conditions, network ser-
vice provider constraints/specifications, etc.

In one embodiment, the pattern detector 237 can detect
recurrences in application requests made by the multiple
applications, for example, by tracking patterns in application
behavior. A tracked pattern can include, detecting that cer-
tain applications, as a background process, poll an applica-
tion server regularly, at certain times of day, on certain days
of the week, periodically in a predictable fashion, with a
certain frequency, with a certain frequency in response to a
certain type of event, in response to a certain type user query,
frequency that requested content is the same, frequency with
which a same request is made, interval between requests,
applications making a request, or any combination of the
above, for example.

Such recurrences can be used by traffic shaping engine
255 to offload polling of content from a content source (e.g.,
from an application server/content provider 110 of FIG. 1A)
that would result from the application requests that would be
performed at the mobile device or wireless device 250 to be
performed instead, by a proxy server (e.g., proxy server 125
of FIG. 1B or proxy server 325 of FIG. 3A) remote from the
device 250. Traffic shaping engine 255 can decide to offload
the polling when the recurrences match a rule. For example,
there are multiple occurrences or requests for the same
resource that have exactly the same content, or returned
value, or based on detection of repeatable time periods
between requests and responses such as a resource that is
requested at specific times during the day. The offloading of
the polling can decrease the amount of bandwidth consump-
tion needed by the mobile device 250 to establish a wireless
(cellular or other wireless broadband) connection with the
content source for repetitive content polls.

As a result of the offloading of the polling, locally cached
content stored in the local cache 285 can be provided to
satisfy data requests at the device 250, when content change
is not detected in the polling of the content sources. As such,
when data has not changed, application data needs can be
satisfied without needing to enable radio use or occupying
cellular bandwidth in a wireless network. When data has
changed and/or new data has been received, the remote
entity to which polling is offloaded, can notify the device
250. The remote entity may be the host server 300 as shown
in the example of FIG. 3A.

20

25

40

45

55

24

In one embodiment, the local proxy 275 can mitigate the
need/use of periodic keep-alive messages (heartbeat mes-
sages) to maintain TCP/IP connections, which can consume
significant amounts of power thus having detrimental
impacts on mobile device battery life. The connection man-
ager 265 in the local proxy (e.g., the heartbeat manager 267)
can detect, identify, and intercept any or all heartbeat (keep-
alive) messages being sent from applications.

The heartbeat manager 267 can prevent any or all of these
heartbeat messages from being sent over the cellular, or
other network, and instead rely on the server component of
the distributed proxy system (e.g., shown in FIG. 1B) to
generate the and send the heartbeat messages to maintain a
connection with the backend (e.g., application server/pro-
vider 110 in the example of FIG. 1A).

The local proxy 275 generally represents any one or a
portion of the functions described for the individual man-
agers, modules, and/or engines. The local proxy 275 and
device 250 can include additional or less components; more
or less functions can be included, in whole or in part, without
deviating from the novel art of the disclosure.

FIG. 2B depicts a block diagram illustrating a further
example of components in the cache system shown in the
example of FIG. 2A which is capable of caching and
adapting caching strategies for mobile application behavior
and/or network conditions.

In one embodiment, the caching policy manager 245
includes a metadata generator 203, a cache look-up engine
205, a cache appropriateness decision engine 246, a poll
schedule generator 247, an application protocol module 248,
a cache or connect selection engine 249 and/or a local cache
invalidator 244. The cache appropriateness decision engine
246 can further include a timing predictor 246a,a content
predictor 2465, a request analyzer 246¢, and/or a response
analyzer 246d, and the cache or connect selection engine
249 includes a response scheduler 249a4. The metadata
generator 203 and/or the cache look-up engine 205 are
coupled to the cache 285 (or local cache) for modification or
addition to cache entries or querying thereof.

The cache look-up engine 205 may further include an ID
or URI filter 2054, the local cache invalidator 244 may
further include a TTL manager 244a, and the poll schedule
generator 247 may further include a schedule update engine
247q and/or a time adjustment engine 2475. One embodi-
ment of caching policy manager 245 includes an application
cache policy repository 243. In one embodiment, the appli-
cation behavior detector 236 includes a pattern detector 237,
a poll interval detector 238, an application profile generator
239, and/or a priority engine 241. The poll interval detector
238 may further include a long poll detector 2384 having a
response/request tracking engine 238b. The poll interval
detector 238 may further include a long poll hunting detector
238c. The application profile generator 239 can further
include a response delay interval tracker 239a.

The pattern detector 237, application profile generator
239, and the priority engine 241 were also described in
association with the description of the pattern detector
shown in the example of FIG. 2A. One embodiment further
includes an application profile repository 242 which can be
used by the local proxy 275 to store information or metadata
regarding application profiles (e.g., behavior, patterns, type
of HTTP requests, etc.)

The cache appropriateness decision engine 246 can
detect, assess, or determine whether content from a content
source (e.g., application server/content provider 110 in the
example of FIG. 1B) with which a mobile device 250
interacts and has content that may be suitable for caching.

US 9,432,486 B2

25

For example, the decision engine 246 can use information
about a request and/or a response received for the request
initiated at the mobile device 250 to determine cacheability,
potential cacheability, or non-cacheability. In some
instances, the decision engine 246 can initially verify
whether a request is directed to a blacklisted destination or
whether the request itself originates from a blacklisted client
or application. If so, additional processing and analysis may
not be performed by the decision engine 246 and the request
may be allowed to be sent over the air to the server to satisfy
the request. The black listed destinations or applications/
clients (e.g., mobile applications) can be maintained locally
in the local proxy (e.g., in the application profile repository
242) or remotely (e.g., in the proxy server 325 or another
entity).

In one embodiment, the decision engine 246, for example,
via the request analyzer 246c¢, collects information about an
application or client request generated at the mobile device
250. The request information can include request character-
istics information including, for example, request method.
For example, the request method can indicate the type of
HTTP request generated by the mobile application or client.
In one embodiment, response to a request can be identified
as cacheable or potentially cacheable if the request method
is a GET request or POST request. Other types of requests
(e.g., OPTIONS, HEAD, PUT, DELETE, TRACE, or CON-
NECT) may or may not be cached. In general, HTTP
requests with uncacheable request methods will not be
cached.

Request characteristics information can further include
information regarding request size, for example. Responses
to requests (e.g., HTTP requests) with body size exceeding
a certain size will not be cached. For example, cacheability
can be determined if the information about the request
indicates that a request body size of the request does not
exceed a certain size. In some instances, the maximum
cacheable request body size can be set to 8092 bytes. In
other instances, different values may be used, dependent on
network capacity or network operator specific settings, for
example.

In some instances, content from a given application
server/content provider (e.g., the server/content provider 110
of FIG. 1B) is determined to be suitable for caching based
on a set of criteria, for example, criteria specifying time
criticality of the content that is being requested from the
content source. In one embodiment, the local proxy (e.g., the
local proxy 175 or 275 of FIG. 1B and FIG. 2A) applies a
selection criteria to store the content from the host server
which is requested by an application as cached elements in
a local cache on the mobile device to satisfy subsequent
requests made by the application.

The cache appropriateness decision engine 246, further
based on detected patterns of requests sent from the mobile
device 250 (e.g., by a mobile application or other types of
clients on the device 250) and/or patterns of received
responses, can detect predictability in requests and/or
responses. For example, the request characteristics informa-
tion collected by the decision engine 246, (e.g., the request
analyzer 246¢) can further include periodicity information
between a request and other requests generated by a same
client on the mobile device or other requests directed to the
same host (e.g., with similar or same identifier parameters).

Periodicity can be detected, by the decision engine 246 or
the request analyzer 246¢, when the request and the other
requests generated by the same client occur at a fixed rate or
nearly fixed rate, or at a dynamic rate with some identifiable
or partially or wholly reproducible changing pattern. If the

15

20

40

45

26

requests are made with some identifiable pattern (e.g.,
regular intervals, intervals having a detectable pattern, or
trend (e.g., increasing, decreasing, constant, etc.) the timing
predictor 246a can determine that the requests made by a
given application on a device is predictable and identify it to
be potentially appropriate for caching, at least from a timing
standpoint.

An identifiable pattern or trend can generally include any
application or client behavior which may be simulated either
locally, for example, on the local proxy 275 on the mobile
device 250 or simulated remotely, for example, by the proxy
server 325 on the host 300, or a combination of local and
remote simulation to emulate application behavior.

In one embodiment, the decision engine 246, for example,
via the response analyzer 246d, can collect information
about a response to an application or client request generated
at the mobile device 250. The response is typically received
from a server or the host of the application (e.g., mobile
application) or client which sent the request at the mobile
device 250. In some instances, the mobile client or appli-
cation can be the mobile version of an application (e.g.,
social networking, search, travel management, voicemail,
contact manager, email) or a web site accessed via a web
browser or via a desktop client.

For example, response characteristics information can
include an indication of whether transfer encoding or
chunked transfer encoding is used in sending the response.
In some instances, responses to HTTP requests with transfer
encoding or chunked transfer encoding are not cached, and
therefore are also removed from further analysis. The ratio-
nale here is that chunked responses are usually large and
non-optimal for caching, since the processing of these
transactions may likely slow down the overall performance.
Therefore, in one embodiment, cacheability or potential for
cacheability can be determined when transfer encoding is
not used in sending the response.

In addition, the response characteristics information can
include an associated status code of the response which can
be identified by the response analyzer 246d. In some
instances, HTTP responses with uncacheable status codes
are typically not cached. The response analyzer 2464 can
extract the status code from the response and determine
whether it matches a status code which is cacheable or
uncacheable. Some cacheable status codes include by way of
example: 200—OK, 301—Redirect, 302—Found, 303—
See other, 304—Not Modified, 307 Temporary Redirect, or
500—Internal server error. Some uncacheable status codes
can include, for example, 403—Forbidden or 404—Not
found.

In one embodiment, cacheability or potential for cache-
ability can be determined if the information about the
response does not indicate an uncacheable status code or
indicates a cacheable status code. If the response analyzer
246d detects an uncacheable status code associated with a
given response, the specific transaction (request/response
pair) may be eliminated from further processing and deter-
mined to be uncacheable on a temporary basis, a semi-
permanent, or a permanent basis. If the status code indicates
cacheability, the transaction (e.g., request and/or response
pair) may be subject to further processing and analysis to
confirm cacheability, as shown in the example flow charts of
FIGS. 9-13.

Response characteristics information can also include
response size information. In general, responses can be
cached locally at the mobile device 250 if the responses do
not exceed a certain size. In some instances, the default
maximum cached response size is set to 115 KB. In other

US 9,432,486 B2

27

instances, the max cacheable response size may be different
and/or dynamically adjusted based on operating conditions,
network conditions, network capacity, user preferences,
network operator requirements, or other application-spe-
cific, user specific, and/or device-specific reasons. In one
embodiment, the response analyzer 246d can identify the
size of the response, and cacheability or potential for cache-
ability can be determined if a given threshold or max value
is not exceeded by the response size.

Furthermore, response characteristics information can
include response body information for the response to the
request and other response to other requests generated by a
same client on the mobile device, or directed to a same
content host or application server. The response body infor-
mation for the response and the other responses can be
compared, for example, by the response analyzer 2464, to
prevent the caching of dynamic content (or responses with
content that changes frequently and cannot be efficiently
served with cache entries, such as financial data, stock
quotes, news feeds, real-time sporting event activities, etc.),
such as content that would no longer be relevant or up-to-
date if served from cached entries.

The cache appropriateness decision engine 246 (e.g., the
content predictor 2465) can definitively identify repeatabil-
ity or identify indications of repeatability, potential repeat-
ability, or predictability in responses received from a content
source (e.g., the content host/application server 110 shown
in the example of FIGS. 1A-B). Repeatability can be
detected by, for example, tracking at least two responses
received from the content source and determines if the two
responses are the same. For example, cacheability can be
determined, by the response analyzer 2464, if the response
body information for the response and the other responses
sent by the same mobile client or directed to the same
host/server are same or substantially the same. The two
responses may or may not be responses sent in response to
consecutive requests. In one embodiment, hash values of the
responses received for requests from a given application are
used to determine repeatability of content (with or without
heuristics) for the application in general and/or for the
specific request. Additional same responses may be required
for some applications or under certain circumstances.

Repeatability in received content need not be 100%
ascertained. For example, responses can be determined to be
repeatable if a certain number or a certain percentage of
responses are the same, or similar. The certain number or
certain percentage of same/similar responses can be tracked
over a select period of time, set by default or set based on
the application generating the requests (e.g., whether the
application is highly dynamic with constant updates or less
dynamic with infrequent updates). Any indicated predict-
ability or repeatability, or possible repeatability, can be
utilized by the distributed system in caching content to be
provided to a requesting application or client on the mobile
device 250.

In one embodiment, for a long poll type request, the local
proxy 175 can begin to cache responses on a third request
when the response delay times for the first two responses are
the same, substantially the same, or detected to be increasing
in intervals. In general, the received responses for the first
two responses should be the same, and upon verifying that
the third response received for the third request is the same
(e.g., if RO=R1=R2), the third response can be locally
cached on the mobile device. Less or more same responses
may be required to begin caching, depending on the type of
application, type of data, type of content, user preferences,
or carrier/network operator specifications.

10

15

20

25

30

35

40

45

50

55

60

28

Increasing response delays with same responses for long
polls can indicate a hunting period (e.g., a period in which
the application/client on the mobile device is seeking the
longest time between a request and response that a given
network will allow), as detected by the long poll hunting
detector 238¢ of the application behavior detector 236.

An example can be described below using T0, T1, T2,
where T indicates the delay time between when a request is
sent and when a response (e.g., the response header) is
detected/received for consecutive requests:

T0=Response0(r)-Request0(£)=180 s. (+/- tolerance)

T1=Responsel(r)-Request1(£)=240 s. (+/- tolerance)

T2=Response2(¢)-Request2(£)=500 s. (+/- tolerance)

In the example timing sequence shown above,
T0<T1<T2, this may indicate a hunting pattern for a long
poll when network timeout has not yet been reached or
exceeded. Furthermore, if the responses R0, R1, and R2
received for the three requests are the same, R2 can be
cached. In this example, R2 is cached during the long poll
hunting period without waiting for the long poll to settle,
thus expediting response caching (e.g., this is optional
accelerated caching behavior which can be implemented for
all or select applications).

As such, the local proxy 275 can specify information that
can be extracted from the timing sequence shown above
(e.g., polling schedule, polling interval, polling type) to the
proxy server and begin caching and to request the proxy
server to begin polling and monitoring the source (e.g., using
any of T0, T1, T2 as polling intervals but typically T2, or the
largest detected interval without timing out, and for which
responses from the source is received will be sent to the
proxy server 325 of FIG. 3A for use in polling the content
source (e.g., application server/service provider 310)).

However, if the time intervals are detected to be getting
shorter, the application (e.g., mobile application)/client may
still be hunting for a time interval for which a response can
be reliably received from the content source (e.g., applica-
tion/server server/provider 110 or 310), and as such caching
typically should not begin until the request/response inter-
vals indicate the same time interval or an increasing time
interval, for example, for a long poll type request.

An example of handling a detected decreasing delay can
be described below using T0, T1, T2, T3, and T4 where T
indicates the delay time between when a request is sent and
when a response (e.g., the response header) is detected/
received for consecutive requests:

T0=Response0(r)-Request0(£)=160 s. (+/- tolerance)

T1=Responsel(r)-Request1(£)=240 s. (+/- tolerance)

T2=Response2(¢)-Request2(£)=500 s. (+/- tolerance)

T3=Time out at 700 s. (+/- tolerance)

T4=Responsed(?)-Requestd(£)=600 (+/- tolerance)

If a pattern for response delays T1<T2<T3>T4 is
detected, as shown in the above timing sequence (e.g.,
detected by the long poll hunting detector 238¢ of the
application behavior detector 236), it can be determined that
T3 likely exceeded the network time out during a long poll
hunting period. In Request 3, a response likely was not
received since the connection was terminated by the net-
work, application, server, or other reason before a response
was sent or available. On Request 4 (after T4), if a response
(e.g., Response 4) is detected or received, the local proxy
275 can then use the response for caching (if the content
repeatability condition is met). The local proxy can also use
T4 as the poll interval in the polling schedule set for the
proxy server to monitor/poll the content source.

Note that the above description shows that caching can
begin while long polls are in hunting mode in the event of

US 9,432,486 B2

29

detecting increasing response delays, as long as responses
are received and not timed out for a given request. This can
be referred to as the optional accelerated caching during
long poll hunting. Caching can also begin after the hunting
mode (e.g., after the poll requests have settled to a constant
or near constant delay value) has completed. Note that
hunting may or may not occur for long polls and when
hunting occurs; the proxy 275 can generally detect this and
determine whether to begin to cache during the hunting
period (increasing intervals with same responses) or wait
until the hunt settles to a stable value.

In one embodiment, the timing predictor 246a of the
cache appropriateness decision engine 246 can track timing
of responses received from outgoing requests from an appli-
cation (e.g., mobile application) or client to detect any
identifiable patterns which can be partially wholly repro-
ducible, such that locally cached responses can be provided
to the requesting client on the mobile device 250 in a manner
that simulates content source (e.g., application server/con-
tent provider 110 or 310) behavior. For example, the manner
in which (e.g., from a timing standpoint) responses or
content would be delivered to the requesting application/
client on the device 250. This ensures preservation of user
experience when responses to application or mobile client
requests are served from a local and/or remote cache instead
of being retrieved/received directly from the content source
(e.g., application, content provider 110 or 310).

In one embodiment, the decision engine 246 or the timing
predictor 246a determines the timing characteristics a given
application (e.g., mobile application) or client from, for
example, the request/response tracking engine 2384 and/or
the application profile generator 239 (e.g., the response
delay interval tracker 2394). Using the timing characteris-
tics, the timing predictor 246a determines whether the
content received in response to the requests are suitable or
are potentially suitable for caching. For example, poll
request intervals between two consecutive requests from a
given application can be used to determine whether request
intervals are repeatable (e.g., constant, near constant,
increasing with a pattern, decreasing with a pattern, etc.) and
can be predicted and thus reproduced at least some of the
times either exactly or approximated within a tolerance
level.

In some instances, the timing characteristics of a given
request type for a specific application, for multiple requests
of an application, or for multiple applications can be stored
in the application profile repository 242. The application
profile repository 242 can generally store any type of
information or metadata regarding application request/re-
sponse characteristics including timing patterns, timing
repeatability, content repeatability, etc.

The application profile repository 242 can also store
metadata indicating the type of request used by a given
application (e.g., long polls, long-held HTTP requests,
HTTP streaming, push, COMET push, etc.) Application
profiles indicating request type by applications can be used
when subsequent same/similar requests are detected, or
when requests are detected from an application which has
already been categorized. In this manner, timing character-
istics for the given request type or for requests of a specific
application which has been tracked and/or analyzed, need
not be reanalyzed.

Application profiles can be associated with a time-to-live
(e.g., or a default expiration time). The use of an expiration
time for application profiles, or for various aspects of an
application or request’s profile can be used on a case by case
basis. The time-to-live or actual expiration time of applica-

10

15

20

25

30

35

40

45

50

55

60

65

30

tion profile entries can be set to a default value or determined
individually, or a combination thereof. Application profiles
can also be specific to wireless networks, physical networks,
network operators, or specific carriers.

One embodiment includes an application blacklist man-
ager 201. The application blacklist manager 201 can be
coupled to the application cache policy repository 243 and
can be partially or wholly internal to local proxy or the
caching policy manager 245. Similarly, the blacklist man-
ager 201 can be partially or wholly internal to local proxy or
the application behavior detector 236. The blacklist manager
201 can aggregate, track, update, manage, adjust, or dynami-
cally monitor a list of destinations of servers/host that are
‘blacklisted,” or identified as not cached, on a permanent or
temporary basis. The blacklist of destinations, when identi-
fied in a request, can potentially be used to allow the request
to be sent over the (cellular) network for servicing. Addi-
tional processing on the request may not be performed since
it is detected to be directed to a blacklisted destination.

Blacklisted destinations can be identified in the applica-
tion cache policy repository 243 by address identifiers
including specific URIs or patterns of identifiers including
URI patterns. In general, blacklisted destinations can be set
by or modified for any reason by any party including the user
(owner/user of mobile device 250), operating system/mobile
platform of device 250, the destination itself, network opera-
tor (of cellular network), Internet service provider, other
third parties, or according to a list of destinations for
applications known to be uncacheable/not suited for cach-
ing. Some entries in the blacklisted destinations may include
destinations aggregated based on the analysis or processing
performed by the local proxy (e.g., cache appropriateness
decision engine 246).

For example, applications or mobile clients on the mobile
device for which responses have been identified as non-
suitable for caching can be added to the blacklist. Their
corresponding hosts/servers may be added in addition to or
in lieu of an identification of the requesting application/
client on the mobile device 250. Some or all of such clients
identified by the proxy system can be added to the blacklist.
For example, for all application clients or applications that
are temporarily identified as not being suitable for caching,
only those with certain detected characteristics (based on
timing, periodicity, frequency of response content change,
content predictability, size, etc.) can be blacklisted.

The blacklisted entries may include a list of requesting
applications or requesting clients on the mobile device
(rather than destinations) such that, when a request is
detected from a given application or given client, it may be
sent through the network for a response, since responses for
blacklisted clients/applications are in most circumstances
not cached.

A given application profile may also be treated or pro-
cessed differently (e.g., different behavior of the local proxy
275 and the remote proxy 325) depending on the mobile
account associated with a mobile device from which the
application is being accessed. For example, a higher paying
account, or a premier account may allow more frequent
access of the wireless network or higher bandwidth allow-
ance thus affecting the caching policies implemented
between the local proxy 275 and proxy server 325 with an
emphasis on better performance compared to conservation
of resources. A given application profile may also be treated
or processed differently under different wireless network
conditions (e.g., based on congestion or network outage,
etc.).

US 9,432,486 B2

31

Note that cache appropriateness can be determined,
tracked, and managed for multiple clients or applications on
the mobile device 250. Cache appropriateness can also be
determined for different requests or request types initiated
by a given client or application on the mobile device 250.
The caching policy manager 245, along with the timing
predictor 246a and/or the content predictor 2465 which
heuristically determines or estimates predictability or poten-
tial predictability, can track, manage and store cacheability
information for various application or various requests for a
given application. Cacheability information may also
include conditions (e.g., an application can be cached at
certain times of the day, or certain days of the week, or
certain requests of a given application can be cached, or all
requests with a given destination address can be cached)
under which caching is appropriate which can be determined
and/or tracked by the cache appropriateness decision engine
246 and stored and/or updated when appropriate in the
application cache policy repository 243 coupled to the cache
appropriateness decision engine 246.

The information in the application cache policy repository
243 regarding cacheability of requests, applications, and/or
associated conditions can be used later on when same
requests are detected. In this manner, the decision engine
246 and/or the timing and content predictors 246a/b need
not track and reanalyze request/response timing and content
characteristics to make an assessment regarding cacheabil-
ity. In addition, the cacheability information can in some
instances be shared with local proxies of other mobile
devices by way of direct communication or via the host
server (e.g., proxy server 325 of host server 300).

For example, cacheability information detected by the
local proxy 275 on various mobile devices can be sent to a
remote host server or a proxy server 325 on the host server
(e.g., host server 300 or proxy server 325 shown in the
example of FIG. 3A, host 100 and proxy server 125 in the
example of FIGS. 1A-B). The remote host or proxy server
can then distribute the information regarding application-
specific, request-specific cacheability information and/or
any associated conditions to various mobile devices or their
local proxies in a wireless network or across multiple
wireless networks (same service provider or multiple wire-
less service providers) for their use.

In general, the selection criteria for caching can further
include, by way of example but not limitation, the state of
the mobile device indicating whether the mobile device is
active or inactive, network conditions, and/or radio coverage
statistics. The cache appropriateness decision engine 246
can in any one or any combination of the criteria, and in any
order, identifying sources for which caching may be suit-
able.

Once application servers/content providers having iden-
tified or detected content that is potentially suitable for local
caching on the mobile device 250, the cache policy manager
245 can proceed to cache the associated content received
from the identified sources by storing content received from
the content source as cache elements in a local cache (e.g.,
local cache 185 or 285 shown in the examples of FIG. 1B
and FIG. 2A, respectively) on the mobile device 250.

The response can be stored in the cache 285 (e.g., also
referred as the local cache) as a cache entry. In addition to
the response to a request, the cached entry can include
response metadata having additional information regarding
caching of the response. The metadata may be generated by
the metadata generator 203 and can include, for example,
timing data such as the access time of the cache entry or
creation time of the cache entry. Metadata can include

10

15

20

25

30

35

40

45

50

55

60

65

32

additional information, such as any information suited for
use in determining whether the response stored as the cached
entry is used to satisfy the subsequent response. For
example, metadata information can further include, request
timing history (e.g., including request time, request start
time, request end time), hash of the request and/or response,
time intervals or changes in time intervals, etc.

The cache entry is typically stored in the cache 285 in
association with a time-to-live (TTL), which for example
may be assigned or determined by the TTL manager 244a of
the cache invalidator 244. The time-to-live of a cache entry
is the amount of time the entry is persisted in the cache 285
regardless of whether the response is still valid or relevant
for a given request or client/application on the mobile device
250. For example, if the time-to-live of a given cache entry
is set to 12 hours, the cache entry is purged, removed, or
otherwise indicated as having exceeded the time-to-live,
even if the response body contained in the cache entry is still
current and applicable for the associated request.

A default time-to-live can be automatically used for all
entries unless otherwise specified (e.g., by the TTL manager
244a), or each cache entry can be created with its individual
TTL (e.g., determined by the TTL manager 244a based on
various dynamic or static criteria). Note that each entry can
have a single time-to-live associated with both the response
data and any associated metadata. In some instances, the
associated metadata may have a different time-to-live (e.g.,
a longer time-to-live) than the response data.

The content source having content for caching can, in
addition or in alternate, be identified to a proxy server (e.g.,
proxy server 125 or 325 shown in the examples of FIG. 1B
and FIG. 3A, respectively) remote from and in wireless
communication with the mobile device 250 such that the
proxy server can monitor the content source (e.g., applica-
tion server/content provider 110) for new or changed data.
Similarly, the local proxy (e.g., the local proxy 175 or 275
of FIG. 1B and FIG. 2A, respectively) can identify to the
proxy server that content received from a specific applica-
tion server/content provider is being stored as cached ele-
ments in the local cache 285.

Once content has been locally cached, the cache policy
manager 245, upon receiving future polling requests to
contact the application server/content host (e.g., 110 or 310),
can retrieve the cached elements from the local cache to
respond to the polling request made at the mobile device 250
such that a radio of the mobile device is not activated to
service the polling request. For example, the cache look-up
engine 205 can query the cache 285 to identify the response
to be served to a response. The response can be served from
the cache in response to identifying a matching cache entry
and also using any metadata stored with the response in the
cache entry. The cache entries can be queried by the cache
look-up engine using a URI of the request or another type of
identifier (e.g., via the ID or URI filter 205a). The cache-
lookup engine 205 can further use the metadata (e.g., extract
any timing information or other relevant information) stored
with the matching cache entry to determine whether
response is still suited for use in being served to a current
request.

Note that the cache-look-up can be performed by the
engine 205 using one or more of various multiple strategies.
In one embodiment, multiple cook-up strategies can be
executed sequentially on each entry store din the cache 285,
until at least one strategy identifies a matching cache entry.
The strategy employed to performing cache look-up can
include a strict matching criteria or a matching criteria
which allows for non-matching parameters.

US 9,432,486 B2

33

For example, the look-up engine 205 can perform a strict
matching strategy which searches for an exact match
between an identifier (e.g., a URI for a host or resource)
referenced in a present request for which the proxy is
attempting to identify a cache entry and an identifier stored
with the cache entries. In the case where identifiers include
URIs or URLs, the matching algorithm for strict matching
will search for a cache entry where all the parameters in the
URLs match. For example:

Example 1.

1. Cache contains entry for http://test.com/products/

2. Request is being made to URI http://test.com/products/
Strict strategy will find a match, since both URIs are same.
Example 2.

1. Cache contains entry for http:/test.com/products/
?query=all

2. Request is being made to URI http://test.com/products/
?query=sub

Under the strict strategy outlined above, a match will not
be found since the URIs differ in the query parameter.

In another example strategy, the look-up engine 205 looks
for a cache entry with an identifier that partially matches the
identifier references in a present request for which the proxy
is attempting to identify a matching cache entry. For
example, the look-up engine 205 may look for a cache entry
with an identifier which differs from the request identifier by
a query parameter value. In utilizing this strategy, the
look-up engine 205 can collect information collected for
multiple previous requests (e.g., a list of arbitrary parameters
in an identifier) to be later checked with the detected
arbitrary parameter in the current request. For example, in
the case where cache entries are stored with URI or URL
identifiers, the look-up engine searches for a cache entry
with a URI differing by a query parameter. If found, the
engine 205 can examine the cache entry for information
collected during previous requests (e.g. a list of arbitrary
parameters) and checked whether the arbitrary parameter
detected in or extracted from the current URI/URL belongs
to the arbitrary parameters list.

Example 1.

1. Cache contains entry for http:/test.com/products/
?query=all, where query is marked as arbitrary.

2. Request is being made to URI http://text.com/products/
?query=sub
Match will be found, since query parameter is marked as
arbitrary.

Example 2.

1. Cache contains entry for http:/test.com/products/
?query=all, where query is marked as arbitrary.

2. Request is being made to URI http://test.com/products/
?query=sub&sort=asc
Match will not be found, since current request contains sort
parameter which is not marked as arbitrary in the cache
entry.

Additional strategies for detecting cache hit may be
employed. These strategies can be implemented singly or in
any combination thereof. A cache-hit can be determined
when any one of these strategies determines a match. A
cache miss may be indicated when the look-up engine 205
determines that the requested data cannot be served from the
cache 285, for any reason. For example, a cache miss may
be determined when no cache entries are identified for any
or all utilized look-up strategies.

Cache miss may also be determined when a matching
cache entry exists but determined to be invalid or irrelevant
for the current request. For example, the look-up engine 205
may further analyze metadata (e.g., which may include

5

10

15

20

25

30

40

45

50

55

60

65

34

timing data of the cache entry) associated with the matching
cache entry to determine whether it is still suitable for use in
responding to the present request.

When the look-up engine 205 has identified a cache hit
(e.g., an event indicating that the requested data can be
served from the cache), the stored response in the matching
cache entry can be served from the cache to satisfy the
request of an application/client.

By servicing requests using cache entries stored in cache
285, network bandwidth and other resources need not be
used to request/receive poll responses which may have not
changed from a response that has already been received at
the mobile device 250. Such servicing and fulfilling appli-
cation (e.g., mobile application) requests locally via cache
entries in the local cache 285 allows for more efficient
resource and mobile network traffic utilization and manage-
ment since the request need not be sent over the wireless
network further consuming bandwidth. In general, the cache
285 can be persisted between power on/off of the mobile
device 250, and persisted across application/client refreshes
and restarts.

For example, the local proxy 275, upon receipt of an
outgoing request from its mobile device 250 or from an
application or other type of client on the mobile device 250,
can intercept the request and determine whether a cached
response is available in the local cache 285 of the mobile
device 250. If so, the outgoing request is responded to by the
local proxy 275 using the cached response on the cache of
the mobile device. As such, the outgoing request can be
filled or satisfied without a need to send the outgoing request
over the wireless network, thus conserving network
resources and battery consumption.

In one embodiment, the responding to the requesting
application/client on the device 250 is timed to correspond
to a manner in which the content server would have
responded to the outgoing request over a persistent connec-
tion (e.g., over the persistent connection, or long-held HTTP
connection, long poll type connection, that would have been
established absent interception by the local proxy). The
timing of the response can be emulated or simulated by the
local proxy 275 to preserve application behavior such that
end user experience is not affected, or minimally affected by
serving stored content from the local cache 285 rather than
fresh content received from the intended content source
(e.g., content host/application server 110 of FIGS. 1A-B).
The timing can be replicated exactly or estimated within a
tolerance parameter, which may go unnoticed by the user or
treated similarly by the application so as to not cause
operation issues.

For example, the outgoing request can be a request for a
persistent connection intended for the content server (e.g.,
application server/content provider of examples of FIGS.
1A-1B). In a persistent connection (e.g., long poll, COMET-
style push or any other push simulation in asynchronous
HTTP requests, long-held HTTP request, HTTP streaming,
or others) with a content source (server), the connection is
held for some time after a request is sent. The connection can
typically be persisted between the mobile device and the
server until content is available at the server to be sent to the
mobile device. Thus, there typically can be some delay in
time between when a long poll request is sent and when a
response is received from the content source. If a response
is not provided by the content source for a certain amount of
time, the connection may also terminate due to network
reasons (e.g., socket closure) if a response is not sent.

Thus, to emulate a response from a content server sent
over a persistent connection (e.g., a long poll style connec-

US 9,432,486 B2

35

tion), the manner of response of the content server can be
simulated by allowing a time interval to elapse before
responding to the outgoing request with the cached
response. The length of the time interval can be determined
on a request by request basis or on an application by
application (client by client basis), for example.

In one embodiment, the time interval is determined based
on request characteristics (e.g., timing characteristics) of an
application on the mobile device from which the outgoing
request originates. For example, poll request intervals (e.g.,
which can be tracked, detected, and determined by the long
poll detector 238a of the poll interval detector 238) can be
used to determine the time interval to wait before responding
to a request with a local cache entry and managed by the
response scheduler 249a.

One embodiment of the cache policy manager 245
includes a poll schedule generator 247 which can generate a
polling schedule for one or more applications on the mobile
device 250. The polling schedule can specify a polling
interval that can be employed by an entity which is physi-
cally distinct and/or separate from the mobile device 250 in
monitoring the content source for one or more applications
(such that cached responses can be verified periodically by
polling a host server (host server 110 or 310) to which the
request is directed) on behalf of the mobile device. One
example of such an external entity which can monitor the
content at the source for the mobile device 250 is a proxy
server (e.g., proxy server 125 or 325 shown in the examples
of FIG. 1B and FIGS. 3A-C).

The polling schedule (e.g., including a rate/frequency of
polling) can be determined, for example, based on the
interval between the polling requests directed to the content
source from the mobile device. The polling schedule or rate
of polling may be determined at the mobile device 250 (by
the local proxy). In one embodiment, the poll interval
detector 238 of the application behavior detector 236 can
monitor polling requests directed to a content source from
the mobile device 250 in order to determine an interval
between the polling requests made from any or all applica-
tion (e.g., mobile application).

For example, the poll interval detector 238 can track
requests and responses for applications or clients on the
device 250. In one embodiment, consecutive requests are
tracked prior to detection of an outgoing request initiated
from the application (e.g., mobile application) on the mobile
device 250 by the same mobile client or application (e.g.,
mobile application). The polling rate can be determined
using request information collected for the request for which
the response is cached. In one embodiment, the rate is
determined from averages of time intervals between previ-
ous requests generated by the same client which generated
the request. For example, a first interval may be computed
between the current request and a previous request, and a
second interval can be computed between the two previous
requests. The polling rate can be set from the average of the
first interval and the second interval and sent to the proxy
server in setting up the caching strategy.

Alternate intervals may be computed in generating an
average; for example, multiple previous requests in addition
to two previous requests may be used, and more than two
intervals may be used in computing an average. In general,
in computing intervals, a given request need not have
resulted in a response to be received from the host server/
content source in order to use it for interval computation. In
other words, the timing characteristics of a given request

30

40

45

55

36

may be used in interval computation, as long as the request
has been detected, even if the request failed in sending, or if
the response retrieval failed.

One embodiment of the poll schedule generator 247
includes a schedule update engine 247a and/or a time
adjustment engine 2475. The schedule update engine 2474
can determine a need to update a rate or polling interval with
which a given application server/content host from a previ-
ously set value, based on a detected interval change in the
actual requests generated from a client or application (e.g.,
mobile application) on the mobile device 250.

For example, a request for which a monitoring rate was
determined may now be sent from the application (e.g.,
mobile application) or client at a different request interval.
The scheduled update engine 247a can determine the
updated polling interval of the actual requests and generate
a new rate, different from the previously set rate to poll the
host at on behalf of the mobile device 250. The updated
polling rate can be communicated to the remote proxy
(proxy server 325) over the cellular network for the remote
proxy to monitor the given host. In some instances, the
updated polling rate may be determined at the remote proxy
or remote entity which monitors the host.

In one embodiment, the time adjustment engine 2475 can
further optimize the poll schedule generated to monitor the
application server/content source (110 or 310). For example,
the time adjustment engine 247b can optionally specify a
time to start polling to the proxy server. For example, in
addition to setting the polling interval at which the proxy
server is to monitor the application, server/content host can
also specify the time at which an actual request was gener-
ated at the mobile client/application.

However, in some cases, due to inherent transmission
delay or added network delays or other types of latencies,
the remote proxy server receives the poll setup from the
local proxy with some delay (e.g., a few minutes, or a few
seconds). This has the effect of detecting response change at
the source after a request is generated by the mobile client/
application causing the invalidate of the cached response to
occur after it has once again been served to the application
after the response is no longer current or valid.

To resolve this non-optimal result of serving the out-dated
content once again before invalidating it, the time adjust-
ment engine 2475 can specity the time (t0) at which polling
should begin in addition to the rate, where the specified
initial time t0 can be specified to the proxy server 325 as a
time that is less than the actual time when the request was
generated by the mobile app/client. This way, the server
polls the resource slightly before the generation of an actual
request by the mobile client such that any content change
can be detected prior to an actual application request. This
prevents invalid or irrelevant out-dated content/response
from being served once again before fresh content is served.

In one embodiment, an outgoing request from a mobile
device 250 is detected to be for a persistent connection (e.g.,
a long poll, COMET style push, and long-held (HTTP)
request) based on timing characteristics of prior requests
from the same application or client on the mobile device
250. For example, requests and/or corresponding responses
can be tracked by the request/response tracking engine 2385
of the long poll detector 238a of the poll interval detector
238.

The timing characteristics of the consecutive requests can
be determined to set up a polling schedule for the application
or client. The polling schedule can be used to monitor the
content source (content source/application server) for con-
tent changes such that cached content stored on the local

US 9,432,486 B2

37

cache in the mobile device 250 can be appropriately man-
aged (e.g., updated or discarded). In one embodiment, the
timing characteristics can include, for example, a response
delay time (‘D) and/or an idle time (‘I'T"). In one embodi-
ment, the response/request tracking engine 2385 can track
requests and responses to determine, compute, and/or esti-
mate, the timing diagrams for applicant or client requests.

For example, the response/request tracking engine 2385
detects a first request (Request 0) initiated by a client on the
mobile device and a second request (Request 1) initiated by
the client on the mobile device after a response is received
at the mobile device responsive to the first request. The
second request is one that is subsequent to the first request.

In one embodiment, the response/request tracking engine
238b can track requests and responses to determine, com-
pute, and/or estimate the timing diagrams for applicant or
client requests. The response/request tracking engine 2385
can detect a first request initiated by a client on the mobile
device and a second request initiated by the client on the
mobile device after a response is received at the mobile
device responsive to the first request. The second request is
one that is subsequent to the first request.

The response/request tracking engine 2385 further deter-
mines relative timings between the first, second requests,
and the response received in response to the first request. In
general, the relative timings can be used by the long poll
detector 238a to determine whether requests generated by
the application are long poll requests.

Note that in general, the first and second requests that are
used by the response/request tracking engine 2385 in com-
puting the relative timings are selected for use after a long
poll hunting period has settled or in the event when long poll
hunting does not occur. Timing characteristics that are
typical of a long poll hunting period can be, for example,
detected by the long poll hunting detector 238¢. In other
words, the requests tracked by the response/request tracking
engine 2386 and used for determining whether a given
request is a long poll occurs after the long poll has settled.

In one embodiment, the long poll hunting detector 238¢
can identify or detect hunting mode, by identifying increas-
ing request intervals (e.g., increasing delays). The long poll
hunting detector 238a can also detect hunting mode by
detecting increasing request intervals, followed by a request
with no response (e.g., connection timed out), or by detect-
ing increasing request intervals followed by a decrease in the
interval. In addition, the long poll hunting detector 238¢ can
apply a filter value or a threshold value to request-response
time delay value (e.g., an absolute value) above which the
detected delay can be considered to be a long poll request-
response delay. The filter value can be any suitable value
characteristic of long polls and/or network conditions (e.g.,
2s,5s,10s, 15 s, 20 s. etc.) and can be used as a filter or
threshold value.

The response delay time (‘D’) refers to the start time to
receive a response after a request has been sent and the idle
refers to time to send a subsequent request after the response
has been received. In one embodiment, the outgoing request
is detected to be for a persistent connection based on a
comparison (e.g., performed by the tracking engine 2385b) of
the response delay time relative (‘D’) or average of (‘D)
(e.g., any average over any period of time) to the idle time
(°IT”), for example, by the long poll detector 238a. The
number of averages used can be fixed, dynamically adjusted,
or changed over a longer period of time. For example, the
requests initiated by the client are determined to be long poll
requests if the response delay time interval is greater than the
idle time interval (D>IT or D>>IT). In one embodiment, the

10

15

20

25

30

35

40

45

50

55

60

65

38

tracking engine 2385 of the long poll detector computes,
determines, or estimates the response delay time interval as
the amount of time elapsed between time of the first request
and initial detection or full receipt of the response.

In one embodiment, a request is detected to be for a
persistent connection when the idle time (‘IT”) is short since
persistent connections, established in response to long poll
requests or long poll HTTP requests for example, can also be
characterized in detecting immediate or near-immediate
issuance of a subsequent request after receipt of a response
to a previous request (e.g., IT~0). As such, the idle time
(‘IT*) can also be used to detect such immediate or near-
immediate re-request to identify long poll requests. The
absolute or relative timings determined by the tracking
engine 2380 are used to determine whether the second
request is immediately or near-immediately re-requested
after the response to the first request is received. For
example, a request may be categorized as a long poll request
if D+RT+IT~D+RT since IT is small for this to hold true. IT
may be determined to be small if it is less than a threshold
value. Note that the threshold value could be fixed or
calculated over a limited time period (a session, a day, a
month, etc.), or calculated over a longer time period (e.g.,
several months or the life of the analysis). For example, for
every request, the average 1T can be determined, and the
threshold can be determined using this average IT (e.g., the
average IT less a certain percentage may be used as the
threshold). This can allow the threshold to automatically
adapt over time to network conditions and changes in server
capability, resource availability or server response. A fixed
threshold can take upon any value including by way of
example but not limitation (e.g., 1 s. 2s. 3 5. ... etc.).

In one embodiment, the long poll detector 238a can
compare the relative timings (e.g., determined by the tracker
engine 238b) to request-response timing characteristics for
other applications to determine whether the requests of the
application are long poll requests. For example, the requests
initiated by a client or application can be determined to be
long poll requests if the response delay interval time (‘D’) or
the average response delay interval time (e.g., averaged over
x number of requests or any number of delay interval times
averaged over X amount of time) is greater than a threshold
value.

The threshold value can be determined using response
delay interval times for requests generated by other clients,
for example by the request/response tracking engine 2385
and/or by the application profile generator 239 (e.g., the
response delay interval tracker 239q). The other clients may
reside on the same mobile device and the threshold value is
determined locally by components on the mobile device.
The threshold value can be determined for all requests over
all resources server over all networks, for example. The
threshold value can be set to a specific constant value (e.g.,
30 seconds, for example) to be used for all requests, or any
request which does not have an applicable threshold value
(e.g., long poll is detected if D>30 seconds).

In some instances, the other clients reside on different
mobile devices and the threshold can be determined by a
proxy server (e.g., proxy server 325 of the host 300 shown
in the example of FIGS. 3A-B) which is external to the
mobile device and able to communicate over a wireless
network with the multiple different mobile devices, as will
be further described with reference to FIG. 3B.

In one embodiment, the cache policy manager 245 sends
the polling schedule to the proxy server (e.g., proxy server
125 or 325 shown in the examples of FIG. 1B and FIG. 3A)
and can be used by the proxy server in monitoring the

US 9,432,486 B2

39

content source, for example, for changed or new content
(updated response different from the cached response asso-
ciated with a request or application). A polling schedule sent
to the proxy can include multiple timing parameters includ-
ing but not limited to interval (time from request 1 to request
2) or a time out interval (time to wait for response, used in
long polls, for example). Referring to the timing diagram of
a request/response timing sequence timing intervals ‘RI’,
‘D, ‘RT°, and/or ‘IT’, or some statistical manipulation of
the above values (e.g., average, standard deviation, etc.) may
all or in part be sent to the proxy server.

For example, in the case when the local proxy 275 detects
a long poll, the various timing intervals in a request/response
timing sequence (e.g., ‘D’, ‘RT’, and/or ‘IT”) can be sent to
the proxy server 325 for use in polling the content source
(e.g., application server/content host 110). The local proxy
275 can also identify to the proxy server 325 that a given
application or request to be monitored is a long poll request
(e.g., instructing the proxy server to set a ‘long poll flag’, for
example). In addition, the proxy server uses the various
timing intervals to determine when to send keep-alive indi-
cations on behalf of mobile devices.

The local cache invalidator 244 of the caching policy
manager 245 can invalidate cache elements in the local
cache (e.g., cache 185 or 285) when new or changed data
(e.g., updated response) is detected from the application
server/content source for a given request. The cached
response can be determined to be invalid for the outgoing
request based on a notification received from the proxy
server (e.g., proxy 325 or the host server 300). The source
which provides responses to requests of the mobile client
can be monitored to determine relevancy of the cached
response stored in the cache of the mobile device 250 for the
request. For example, the cache invalidator 244 can further
remove/delete the cached response from the cache of the
mobile device when the cached response is no longer valid
for a given request or a given application.

In one embodiment, the cached response is removed from
the cache after it is provided once again to an application
which generated the outgoing request after determining that
the cached response is no longer valid. The cached response
can be provided again without waiting for the time interval
or provided again after waiting for a time interval (e.g., the
time interval determined to be specific to emulate the
response delay in a long poll). In one embodiment, the time
interval is the response delay ‘D’ or an average value of the
response delay ‘D’ over two or more values.

The new or changed data can be, for example, detected by
the proxy server (e.g., proxy server 125 or 325 shown in the
examples of FIG. 1B and FIG. 3A). When a cache entry for
a given request/poll has been invalidated, the use of the radio
on the mobile device 250 can be enabled (e.g., by the local
proxy 275 or the cache policy manager 245) to satisfy the
subsequent polling requests, as further described with ref-
erence to the interaction diagram of FIG. 4B.

One embodiment of the cache policy manager 245
includes a cache or connect selection engine 249 which can
decide whether to use a locally cached entry to satisfy a
poll/content request generated at the mobile device 250 by
an application or widget. For example, the local proxy 275
or the cache policy manger 245 can intercept a polling
request, made by an application (e.g., mobile application) on
the mobile device, to contact the application server/content
provider. The selection engine 249 can determine whether
the content received for the intercepted request has been
locally stored as cache elements for deciding whether the
radio of the mobile device needs to be activated to satisfy the

10

15

20

25

30

35

40

45

50

55

60

65

40

request made by the application (e.g., mobile application)
and also determine whether the cached response is still valid
for the outgoing request prior to responding to the outgoing
request using the cached response.

In one embodiment, the local proxy 275, in response to
determining that relevant cached content exists and is still
valid, can retrieve the cached elements from the local cache
to provide a response to the application (e.g., mobile appli-
cation) which made the polling request such that a radio of
the mobile device is not activated to provide the response to
the application (e.g., mobile application). In general, the
local proxy 275 continues to provide the cached response
each time the outgoing request is received until the updated
response different from the cached response is detected.

When it is determined that the cached response is no
longer valid, a new request for a given request is transmitted
over the wireless network for an updated response. The
request can be transmitted to the application server/content
provider (e.g., server’host 110) or the proxy server on the
host server (e.g., proxy 325 on the host 300) for a new and
updated response. In one embodiment the cached response
can be provided again as a response to the outgoing request
if a new response is not received within the time interval,
prior to removal of the cached response from the cache on
the mobile device.

FIG. 2C depicts a block diagram illustrating another
example of components in the application behavior detector
236 and the caching policy manager 245 in the local proxy
275 on the client-side of the distributed proxy system shown
in the example of FIG. 2A. The illustrated application
behavior detector 236 and the caching policy manager 245
can, for example, enable the local proxy 275 to detect cache
defeat and perform caching of content addressed by identi-
fiers intended to defeat cache.

In one embodiment, the caching policy manager 245
includes a cache defeat resolution engine 221, an identifier
formalizer 211, a cache appropriateness decision engine 246,
a poll schedule generator 247, an application protocol mod-
ule 248, a cache or connect selection engine 249 having a
cache query module 229, and/or a local cache invalidator
244. The cache defeat resolution engine 221 can further
include a pattern extraction module 222 and/or a cache
defeat parameter detector 223. The cache defeat parameter
detector 223 can further include a random parameter detec-
tor 224 and/or a time/date parameter detector 226. One
embodiment further includes an application cache policy
repository 243 coupled to the decision engine 246.

In one embodiment, the application behavior detector 236
includes a pattern detector 237, a poll interval detector 238,
an application profile generator 239, and/or a priority engine
241. The pattern detector 237 can further include a cache
defeat parameter detector 223 having also, for example, a
random parameter detector 233 and/or a time/date parameter
detector 234. One embodiment further includes an applica-
tion profile repository 242 coupled to the application profile
generator 239. The application profile generator 239, and the
priority engine 241 have been described in association with
the description of the application behavior detector 236 in
the example of FIG. 2A.

The cache defeat resolution engine 221 can detect, iden-
tify, track, manage, and/or monitor content or content
sources (e.g., servers or hosts) which employ identifiers
and/or are addressed by identifiers (e.g., resource identifiers
such as URLs and/or URIs) with one or more mechanisms
that defeat cache or are intended to defeat cache. The cache
defeat resolution engine 221 can, for example, detect from
a given data request generated by an application or client

US 9,432,486 B2

41

that the identifier defeats or potentially defeats cache, where
the data request otherwise addresses content or responses
from a host or server (e.g., application server/content host
110 or 310) that is cacheable.

In one embodiment, the cache defeat resolution engine
221 detects or identifies cache defeat mechanisms used by
content sources (e.g., application server/content host 110 or
310) using the identifier of a data request detected at the
mobile device 250. The cache defeat resolution engine 221
can detect or identify a parameter in the identifier which can
indicate that cache defeat mechanism is used. For example,
a format, syntax, or pattern of the parameter can be used to
identify cache defeat (e.g., a pattern, format, or syntax as
determined or extracted by the pattern extraction module
222).

The pattern extraction module 222 can parse an identifier
into multiple parameters or components and perform a
matching algorithm on each parameter to identify any of
which match one or more predetermined formats (e.g., a date
and/or time format). For example, the results of the match-
ing or the parsed out parameters from an identifier can be
used (e.g., by the cache defeat parameter detector 223) to
identify cache defeating parameters which can include one
or more changing parameters.

The cache defeat parameter detector 223, in one embodi-
ment can detect random parameters (e.g., by the random
parameter detector 224) and/or time and/or date parameters
which are typically used for cache defeat. The cache defeat
parameter detector 223 can detect random parameters (e.g.,
as illustrated in parameters 752 shown in FIG. 7) and/or
time/dates using commonly employed formats for these
parameters and performing pattern matching algorithms and
tests.

In addition to detecting patterns, formats, and/or syntaxes,
the cache defeat parameter detector 223 further determines
or confirms whether a given parameter is defeating cache
and whether the addressed content can be cached by the
distributed caching system. The cache defeat parameter
detector 223 can detect this by analyzing responses received
for the identifiers utilized by a given data request. In general,
a changing parameter in the identifier is identified to indicate
cache defeat when responses corresponding to multiple data
requests are the same even when the multiple data requests
uses identifiers with the changing parameter being different
for each of the multiple data requests. For example, the
request/response pairs illustrate that the responses received
are the same, even though the resource identifier includes a
parameter that changes with each request.

For example, at least two same responses may be required
to identify the changing parameter as indicating cache
defeat. In some instances, at least three same responses may
be required. The requirement for the number of same
responses needed to determine that a given parameter with
a varying value between requests is cache defeating may be
application specific, context dependent, and/or user depen-
dent/user specified, or a combination of the above. Such a
requirement may also be static or dynamically adjusted by
the distributed cache system to meet certain performance
thresholds and/or either explicit/implicit feedback regarding
user experience (e.g., whether the user or application is
receiving relevant/fresh content responsive to requests).
More of the same responses may be required to confirm
cache defeat, or for the system to treat a given parameter as
intended for cache defeat if an application begins to mal-
function due to response caching and/or if the user expresses
dissatistaction (explicit user feedback) or the system detects
user frustration (implicit user cues).

10

15

20

25

30

35

40

45

50

55

60

65

42

The cache appropriateness decision engine 246 can
detect, assess, or determine whether content from a content
source (e.g., application server/content provider 110 in the
example of FIG. 1B) with which a mobile device 250
interacts, has content that may be suitable for caching. In
some instances, content from a given application server/
content provider (e.g., the server/provider 110 of FIG. 1B) is
determined to be suitable for caching based on a set of
criteria (for example, criteria specifying time criticality of
the content that is being requested from the content source).
In one embodiment, the local proxy (e.g., the local proxy
175 or 275 of FIG. 1B and FIG. 2A) applies a selection
criteria to store the content from the host server which is
requested by an application as cached elements in a local
cache on the mobile device to satisfy subsequent requests
made by the application.

The selection criteria can also include, by way of
example, but not limitation, state of the mobile device
indicating whether the mobile device is active or inactive,
network conditions, and/or radio coverage statistics. The
cache appropriateness decision engine 246 can any one or
any combination of the criteria, and in any order, in iden-
tifying sources for which caching may be suitable.

Once application servers/content providers having iden-
tified or detected content that is potentially suitable for local
caching on the mobile device 250, the cache policy manager
245 can proceed to cache the associated content received
from the identified sources by storing content received from
the content source as cache elements in a local cache (e.g.,
local cache 185 or 285 shown in the examples of FIG. 1B
and FIG. 2A, respectively) on the mobile device 250. The
content source can also be identified to a proxy server (e.g.,
proxy server 125 or 325 shown in the examples of FIG. 1B
and FIG. 3A, respectively) remote from and in wireless
communication with the mobile device 250 such that the
proxy server can monitor the content source (e.g., applica-
tion server/content provider 110) for new or changed data.
Similarly, the local proxy (e.g., the local proxy 175 or 275
of FIG. 1B and FIG. 2A, respectively) can identify to the
proxy server that content received from a specific applica-
tion server/content provider is being stored as cached ele-
ments in the local cache.

In one embodiment, cache elements are stored in the local
cache 285 as being associated with a normalized version of
an identifier for an identifier employing one or more param-
eters intended to defeat cache. The identifier can be normal-
ized by the identifier normalizer module 211 and the nor-
malization process can include, by way of example, one or
more of: converting the URI scheme and host to lower-case,
capitalizing letters in percent-encoded escape sequences,
removing a default port, and removing duplicate slashes.

In another embodiment, the identifier is normalized by
removing the parameter for cache defeat and/or replacing
the parameter with a static value which can be used to
address or be associated with the cached response received
responsive to a request utilizing the identifier by the nor-
malizer 211 or the cache defeat parameter handler 212. For
example, the cached elements stored in the local cache 285
(shown in FIG. 2A) can be identified using the normalized
version of the identifier or a hash value of the normalized
version of the identifier. The hash value of an identifier or of
the normalized identifier may be generated by the hash
engine 213.

Once content has been locally cached, the cache policy
manager 245 can, upon receiving future polling requests to
contact the content server, retrieve the cached elements from
the local cache to respond to the polling request made at the

US 9,432,486 B2

43

mobile device 250 such that a radio of the mobile device is
not activated to service the polling request. Such servicing
and fulfilling application (e.g., mobile application) requests
locally via local cache entries allow for more efficient
resource and mobile network traffic utilization and manage-
ment since network bandwidth and other resources need not
be used to request/receive poll responses which may have
not changed from a response that has already been received
at the mobile device 250.

One embodiment of the cache policy manager 245
includes a poll schedule generator 247 which can generate a
polling schedule for one or more applications on the mobile
device 250. The polling schedule can specify a polling
interval that can be employed by the proxy server (e.g.,
proxy server 125 or 325 shown in the examples of FIG. 1B
and FIG. 3A) in monitoring the content source for one or
more applications. The polling schedule can be determined,
for example, based on the interval between the polling
requests directed to the content source from the mobile
device. In one embodiment, the poll interval detector 238 of
the application behavior detector can monitor polling
requests directed to a content source from the mobile device
250 in order to determine an interval between the polling
requests made from any or all application (e.g., mobile
application).

In one embodiment, the cache policy manager 245 sends
the polling schedule is sent to the proxy server (e.g., proxy
server 125 or 325 shown in the examples of FIG. 1B and
FIG. 3A) and can be used by the proxy server in monitoring
the content source, for example, for changed or new content.
The local cache invalidator 244 of the caching policy
manager 245 can invalidate cache elements in the local
cache (e.g., cache 185 or 285) when new or changed data is
detected from the application server/content source for a
given request. The new or changed data can be, for example,
detected by the proxy server. When a cache entry for a given
request/poll has been invalidated and/or removed (e.g.,
deleted from cache) after invalidation, the use of the radio on
the mobile device 250 can be enabled (e.g., by the local
proxy or the cache policy manager 245) to satisfy the
subsequent polling requests, as further described with ref-
erence to the interaction diagram of FIGS. 9-10.

In another embodiment, the proxy server (e.g., proxy
server 125 or 325 shown in the examples of FIG. 1B and
FIG. 3A) uses a modified version of a resource identifier
used in a data request to monitor a given content source (the
application server/content host 110 of FIG. 1A and FIG. 1B
to which the data request is addressed) for new or changed
data. For example, in the instance where the content source
or identifier is detected to employ cache defeat mechanisms,
a modified (e.g., normalized) identifier can be used instead
to poll the content source. The modified or normalized
version of the identifier can be communicated to the proxy
server by the caching policy manager 245, or more specifi-
cally the cache defeat parameter handler 212 of the identifier
normalizer 211.

The modified identifier used by the proxy server to poll
the content source on behalf of the mobile device/applica-
tion (e.g., mobile application) may or may not be the same
as the normalized identifier. For example, the normalized
identifier may be the original identifier with the changing
cache defeating parameter removed whereas the modified
identifier uses a substitute parameter in place of the param-
eter that is used to defeat cache (e.g., the changing parameter
replaced with a static value or other predetermined value
known to the local proxy and/or proxy server). The modified
parameter can be determined by the local proxy 275 and

10

15

20

25

30

35

40

45

50

55

60

65

44

communicated to the proxy server. The modified parameter
may also be generated by the proxy server (e.g., by the
identifier modifier module 353 shown in the example of FIG.
30).

One embodiment of the cache policy manager 245
includes a cache or connect selection engine 249 which can
decide whether to use a locally cached entry to satisfy a
poll/content request generated at the mobile device 250 by
an application or widget. For example, the local proxy 275
or the cache policy manger 245 can intercept a polling
request made by an application (e.g., mobile application) on
the mobile device, to contact the application server/content
provider. The selection engine 249 can determine whether
the content received for the intercepted request has been
locally stored as cache elements for deciding whether the a
radio of the mobile device needs to be activated to satisfy the
request made by the application (e.g., mobile application). In
one embodiment, the local proxy 275, in response to deter-
mining that relevant cached content exists and is still valid,
can retrieve the cached elements from the local cache to
provide a response to the application (e.g., mobile applica-
tion) which made the polling request such that a radio of the
mobile device is not activated to provide the response to the
application (e.g., mobile application).

In one embodiment, the cached elements stored in the
local cache 285 (shown in FIG. 2A) can be identified using
a normalized version of the identifier or a hash value of the
normalized version of the identifier, for example, using the
cache query module 229. Cached elements can be stored
with normalized identifiers which have cache defeating
parameters removed or otherwise replaced such that the
relevant cached elements can be identified and retrieved in
the future to satisfy other requests employing the same type
of cache defeat. For example, when an identifier utilized in
a subsequent request is determined to be utilizing the same
cache defeating parameter, the normalized version of this
identifier can be generated and used to identify a cached
response stored in the mobile device cache to satisfy the data
request. The hash value of an identifier or of the normalized
identifier may be generated by the hash engine 213 of the
identifier normalizer 211.

FIG. 2D depicts a block diagram illustrating examples of
additional components in the local proxy 275 shown in the
example of FIG. 2A which is further capable of performing
mobile traffic categorization and policy implementation
based on application behavior and/or user activity.

In this embodiment of the local proxy 275, the user
activity module 215 further includes one or more of, a user
activity tracker 215a, a user activity prediction engine 2155,
and/or a user expectation manager 215¢. The application
behavior detect 236 can further include a prioritization
engine 241a, a time criticality detection engine 2415, an
application state categorizer 241c, and/or an application
traffic categorizer 241d. The local proxy 275 can further
include a backlight detector 219 and/or a network configu-
ration selection engine 251. The network configuration
selection engine 251 can further include, one or more of, a
wireless generation standard selector 251a, a data rate
specifier 2515, an access channel selection engine 251c,
and/or an access point selector.

In one embodiment, the application behavior detector 236
is able to detect, determined, identify, or infer, the activity
state of an application on the mobile device 250 to which
traffic has originated from or is directed to, for example, via
the application state categorizer 241¢ and/or the traffic
categorizer 241d. The activity state can be determined by
whether the application is in a foreground or background

US 9,432,486 B2

45

state on the mobile device (via the application state catego-
rizer 241c¢) since the traffic for a foreground application vs.
a background application may be handled differently.

In one embodiment, the activity state can be determined,
detected, identified, or inferred with a level of certainty of
heuristics, based on the backlight status of the mobile device
250 (e.g., by the backlight detector 219) or other software
agents or hardware sensors on the mobile device, including
but not limited to, resistive sensors, capacitive sensors,
ambient light sensors, motion sensors, touch sensors, etc. In
general, if the backlight is on, the traffic can be treated as
being or determined to be generated from an application that
is active or in the foreground, or the traffic is interactive. In
addition, if the backlight is on, the traffic can be treated as
being or determined to be traffic from user interaction or user
activity, or traffic containing data that the user is expecting
within some time frame.

In one embodiment, the activity state is determined based
on whether the traffic is interactive traffic or maintenance
traffic. Interactive traffic can include transactions from
responses and requests generated directly from user activity/
interaction with an application and can include content or
data that a user is waiting or expecting to receive. Mainte-
nance traffic may be used to support the functionality of an
application which is not directly detected by a user. Main-
tenance traffic can also include actions or transactions that
may take place in response to a user action, but the user is
not actively waiting for or expecting a response.

For example, a mail or message delete action at a mobile
device 250 generates a request to delete the corresponding
mail or message at the server, but the user typically is not
waiting for a response. Thus, such a request may be catego-
rized as maintenance traffic, or traffic having a lower priority
(e.g., by the prioritization engine 241a) and/or is not time-
critical (e.g., by the time criticality detection engine 2145).

Contrastingly, a mail ‘read’ or message ‘read’ request
initiated by a user a the mobile device 250, can be catego-
rized as ‘interactive traffic’ since the user generally is
waiting to access content or data when they request to read
a message or mail. Similarly, such a request can be catego-
rized as having higher priority (e.g., by the prioritization
engine 241a) and/or as being time critical/time sensitive
(e.g., by the time criticality detection engine 2415).

The time criticality detection engine 2415 can generally
determine, identify, infer the time sensitivity of data con-
tained in traffic sent from the mobile device 250 or to the
mobile device from a host server (e.g., host 300) or appli-
cation server (e.g., app server/content source 110). For
example, time sensitive data can include, status updates,
stock information updates, IM presence information, email
messages or other messages, actions generated from mobile
gaming applications, webpage requests, location updates,
etc. Data that is not time sensitive or time critical, by nature
of the content or request, can include requests to delete
messages, mark-as-read or edited actions, application-spe-
cific actions such as a add-friend or delete-friend request,
certain types of messages, or other information which does
not frequently changing by nature, etc. In some instances
when the data is not time critical, the timing with which to
allow the traffic to pass through is set based on when
additional data needs to be sent from the mobile device 250.
For example, traffic shaping engine 255 can align the traffic
with one or more subsequent transactions to be sent together
in a single power-on event of the mobile device radio (e.g.,
using the alignment module 256 and/or the batching module
257). The alignment module 256 can also align polling

20

25

30

35

40

45

46

requests occurring close in time directed to the same host
server, since these request are likely to be responded to with
the same data.

In the alternate or in combination, the activity state can be
determined from assessing, determining, evaluating, infer-
ring, identifying user activity at the mobile device 250 (e.g.,
via the user activity module 215). For example, user activity
can be directly detected and tracked using the user activity
tracker 215a. The traffic resulting therefrom can then be
categorized appropriately for subsequent processing to
determine the policy for handling. Furthermore, user activity
can be predicted or anticipated by the user activity predic-
tion engine 2155b. By predicting user activity or anticipating
user activity, the traffic thus occurring after the prediction
can be treated as resulting from user activity and categorized
appropriately to determine the transmission policy.

In addition, the user activity module 215 can also manage
user expectations (e.g., via the user expectation manager
215¢ and/or in conjunction with the activity tracker 215
and/or the prediction engine 21556) to ensure that traffic is
categorized appropriately such that user expectations are
generally met. For example, a user-initiated action should be
analyzed (e.g., by the expectation manager 215) to deter-
mine or infer whether the user would be waiting for a
response. If so, such traffic should be handled under a policy
such that the user does not experience an unpleasant delay
in receiving such a response or action.

In one embodiment, an advanced generation wireless
standard network is selected for use in sending traffic
between a mobile device and a host server in the wireless
network based on the activity state of the application on the
mobile device for which traffic is originated from or directed
to. An advanced technology standards such as the 3G, 3.5G,
3G+, 4G, or LTE network can be selected for handling traffic
generated as a result of user interaction, user activity, or
traffic containing data that the user is expecting or waiting
for. Advanced generation wireless standard network can also
be selected for to transmit data contained in traffic directed
to the mobile device which responds to foreground activi-
ties.

In categorizing traffic and defining a transmission policy
for mobile traffic, a network configuration can be selected
for use (e.g., by the network configuration selection engine
251) on the mobile device 250 in sending traffic between the
mobile device and a proxy server (325) and/or an application
server (e.g., app server/host 110). The network configuration
that is selected can be determined based on information
gathered by the application behavior module 236 regarding
application activity state (e.g., background or foreground
traffic), application traffic category (e.g., interactive or main-
tenance ftraffic), any priorities of the data/content, time
sensitivity/criticality.

The network configuration selection engine 2510 can
select or specify one or more of, a generation standard (e.g.,
via wireless generation standard selector 251a), a data rate
(e.g., via data rate specifier 2515), an access channel (e.g.,
access channel selection engine 251c¢), and/or an access
point (e.g., via the access point selector 251d), in any
combination.

For example, a more advanced generation (e.g., 3G, LTE,
or 4G or later) can be selected or specified for traffic when
the activity state is in interaction with a user or in a
foreground on the mobile device. Contrastingly, an older
generation standard (e.g., 2G, 2.5G, or 3G or older) can be
specified for traffic when one or more of the following is
detected, the application is not interacting with the user, the
application is running in the background on the mobile

US 9,432,486 B2

47

device, or the data contained in the traffic is not time critical,
or is otherwise determined to have lower priority.

Similarly, a network configuration with a slower data rate
can be specified for traffic when one or more of the follow-
ing is detected, the application is not interacting with the
user, the application is running in the background on the
mobile device, or the data contained in the traffic is not time
critical. The access channel (e.g., Forward access channel or
dedicated channel) can be specified.

FIG. 3A depicts a block diagram illustrating an example
of server-side components in a distributed proxy and cache
system residing on a host server 300 that manages traffic in
a wireless network for resource conservation. The server-
side proxy (or proxy server 325) can further categorize
mobile traffic and/or implement delivery policies based on
application behavior, content priority, user activity, and/or
user expectations.

The host server 300 generally includes, for example, a
network interface 308 and/or one or more repositories 312,
314, and 316. Note that server 300 may be any portable/
mobile or non-portable device, server, cluster of computers
and/or other types of processing units (e.g., any number of
machines shown in the example of FIG. 24) able to receive
or transmit signals to satisfy data requests over a network
including any wired or wireless networks (e.g., WiF1i, cel-
Iular, Bluetooth, etc.).

The network interface 308 can include networking mod-
ule(s) or devices(s) that enable the server 300 to mediate
data in a network with an entity that is external to the host
server 300, through any known and/or convenient commu-
nications protocol supported by the host and the external
entity. Specifically, the network interface 308 allows the
server 300 to communicate with multiple devices including
mobile phone devices 350 and/or one or more application
servers/content providers 310.

The host server 300 can store information about connec-
tions (e.g., network characteristics, conditions, types of
connections, etc.) with devices in the connection metadata
repository 312. Additionally, any information about third
party application or content providers can also be stored in
the repository 312. The host server 300 can store informa-
tion about devices (e.g., hardware capability, properties,
device settings, device language, network capability, manu-
facturer, device model, OS, OS version, etc.) in the device
information repository 314. Additionally, the host server 300
can store information about network providers and the
various network service areas in the network service pro-
vider repository 316.

The communication enabled by network interface 308
allows for simultaneous connections (e.g., including cellular
connections) with devices 350 and/or connections (e.g.,
including wired/wireless, HTTP, Internet connections, LAN,
WiF1i, etc.) with content servers/providers 310 to manage the
traffic between devices 350 and content providers 310, for
optimizing network resource utilization and/or to conserver
power (battery) consumption on the serviced devices 350.
The host server 300 can communicate with mobile devices
350 serviced by different network service providers and/or
in the same/different network service areas. The host server
300 can operate and is compatible with devices 350 with
varying types or levels of mobile capabilities, including by
way of example but not limitation, 1G, 2G, 2G transitional
(2.5G, 2.75G), 3G (IMT-2000), 3G transitional (3.5G,
3.75G, 3.9G), 4G (IMT-advanced), etc.

In general, the network interface 308 can include one or
more of a network adaptor card, a wireless network interface
card (e.g., SMS interface, WiFi interface, interfaces for

30

35

40

45

50

55

48

various generations of mobile communication standards
including but not limited to 1G, 2G, 3G, 3.5G, 4G type
networks such as LTE, WiMAX, etc.), Bluetooth, WiFi, or
any other network whether or not connected via a router, an
access point, a wireless router, a switch, a multilayer switch,
a protocol converter, a gateway, a bridge, a bridge router, a
hub, a digital media receiver, and/or a repeater.

The host server 300 can further include server-side com-
ponents of the distributed proxy and cache system which can
include a proxy server 325 and a server cache 335. In one
embodiment, the proxy server 325 can include an HTTP
access engine 345, a caching policy manager 355, a proxy
controller 365, a traffic shaping engine 375, a new data
detector 347 and/or a connection manager 395.

The HTTP access engine 345 may further include a
heartbeat manager 398; the proxy controller 365 may further
include a data invalidator module 368; the traffic shaping
engine 375 may further include a control protocol 376 and
a batching module 377. Additional or less components/
modules/engines can be included in the proxy server 325
and each illustrated component.

As used herein, a “module,” a “manager,” a “handler,” a
“detector,” an “interface,” a “controller,” a “normalizer,” a
“generator,” an “invalidator,” or an “engine” includes a
general purpose, dedicated or shared processor and, typi-
cally, firmware or software modules that are executed by the
processor. Depending upon implementation-specific or other
considerations, the module, manager, handler, detector,
interface, controller, normalizer, generator, invalidator, or
engine can be centralized or its functionality distributed. The
module, manager, handler, detector, interface, controller,
normalizer, generator, invalidator, or engine can include
general or special purpose hardware, firmware, or software
embodied in a computer-readable (storage) medium for
execution by the processor. As used herein, a computer-
readable medium or computer-readable storage medium is
intended to include all mediums that are statutory (e.g., in
the United States, under 35 U.S.C. 101), and to specifically
exclude all mediums that are non-statutory in nature to the
extent that the exclusion is necessary for a claim that
includes the computer-readable (storage) medium to be
valid. Known statutory computer-readable mediums include
hardware (e.g., registers, random access memory (RAM),
non-volatile (NV) storage, to name a few), but may or may
not be limited to hardware.

In the example of a device (e.g., mobile device 350)
making an application or content request to an application
server or content provider 310, the request may be inter-
cepted and routed to the proxy server 325 which is coupled
to the device 350 and the application server/content provider
310. Specifically, the proxy server is able to communicate
with the local proxy (e.g., proxy 175 and 275 of the
examples of FIG. 1 and FIG. 2 respectively) of the mobile
device 350, the local proxy forwards the data request to the
proxy server 325 in some instances for further processing
and, if needed, for transmission to the application server/
content server 310 for a response to the data request.

In such a configuration, the host 300, or the proxy server
325 in the host server 300 can utilize intelligent information
provided by the local proxy in adjusting its communication
with the device in such a manner that optimizes use of
network and device resources. For example, the proxy server
325 can identify characteristics of user activity on the device
350 to modify its communication frequency. The character-
istics of user activity can be determined by, for example, the

US 9,432,486 B2

49

activity/behavior awareness module 366 in the proxy con-
troller 365 via information collected by the local proxy on
the device 350.

In one embodiment, communication frequency can be
controlled by the connection manager 395 of the proxy
server 325, for example, to adjust push frequency of content
or updates to the device 350. For instance, push frequency
can be decreased by the connection manager 395 when
characteristics of the user activity indicate that the user is
inactive. In one embodiment, when the characteristics of the
user activity indicate that the user is subsequently active
after a period of inactivity, the connection manager 395 can
adjust the communication frequency with the device 350 to
send data that was buffered as a result of decreased com-
munication frequency to the device 350.

In addition, the proxy server 325 includes priority aware-
ness of various requests, transactions, sessions, applications,
and/or specific events. Such awareness can be determined by
the local proxy on the device 350 and provided to the proxy
server 325. The priority awareness module 367 of the proxy
server 325 can generally assess the priority (e.g., including
time-criticality, time-sensitivity, etc.) of various events or
applications; additionally, the priority awareness module
367 can track priorities determined by local proxies of
devices 350.

In one embodiment, through priority awareness, the con-
nection manager 395 can further modify communication
frequency (e.g., use or radio as controlled by the radio
controller 396) of the server 300 with the devices 350. For
example, the server 300 can notify the device 350, thus
requesting use of the radio if it is not already in use when
data or updates of an importance/priority level which meets
a criteria becomes available to be sent.

In one embodiment, the proxy server 325 can detect
multiple occurrences of events (e.g., transactions, content,
data received from server/provider 310) and allow the events
to accumulate for batch transfer to device 350. Batch trans-
fer can be cumulated and transfer of events can be delayed
based on priority awareness and/or user activity/application
behavior awareness as tracked by modules 367 and/or 366.
For example, batch transfer of multiple events (of a lower
priority) to the device 350 can be initiated by the batching
module 377 when an event of a higher priority (meeting a
threshold or criteria) is detected at the server 300. In
addition, batch transfer from the server 300 can be triggered
when the server receives data from the device 350, indicat-
ing that the device radio is already in use and is thus on. In
one embodiment, the proxy server 325 can order the each
messages/packets in a batch for transmission based on
event/transaction priority such that higher priority content
can be sent first in case connection is lost or the battery dies,
etc.

In one embodiment, the server 300 caches data (e.g., as
managed by the caching policy manager 355) such that
communication frequency over a network (e.g., cellular
network) with the device 350 can be modified (e.g.,
decreased). The data can be cached, for example, in the
server cache 335 for subsequent retrieval or batch sending to
the device 350 to potentially decrease the need to turn on the
device 350 radio. The server cache 335 can be partially or
wholly internal to the host server 300, although in the
example of FIG. 3A it is shown as being external to the host
300. In some instances, the server cache 335 may be the
same as and/or integrated in part or in whole with another
cache managed by another entity (e.g., the optional caching
proxy server 199 shown in the example of FIG. 1B), such as

15

30

40

45

50

being managed by an application server/content provider
310, a network service provider, or another third party.

In one embodiment, content caching is performed locally
on the device 350 with the assistance of host server 300. For
example, proxy server 325 in the host server 300 can query
the application server/provider 310 with requests and moni-
tor changes in responses. When changed or new responses
are detected (e.g., by the new data detector 347), the proxy
server 325 can notify the mobile device 350 such that the
local proxy on the device 350 can make the decision to
invalidate (e.g., indicated as out-dated) the relevant cache
entries stored as any responses in its local cache. Alterna-
tively, the data invalidator module 368 can automatically
instruct the local proxy of the device 350 to invalidate
certain cached data, based on received responses from the
application server/provider 310. The cached data is marked
as invalid, and can get replaced or deleted when new content
is received from the content server 310.

Note that data change can be detected by the detector 347
in one or more ways. For example, the server/provider 310
can notify the host server 300 upon a change. The change
can also be detected at the host server 300 in response to a
direct poll of the source server/provider 310. In some
instances, the proxy server 325 can in addition, pre-load the
local cache on the device 350 with the new/updated data.
This can be performed when the host server 300 detects that
the radio on the mobile device is already in use, or when the
server 300 has additional content/data to be sent to the
device 350.

One or more the above mechanisms can be implemented
simultaneously or adjusted/configured based on application
(e.g., different policies for different servers/providers 310).
In some instances, the source provider/server 310 may
notify the host 300 for certain types of events (e.g., events
meeting a priority threshold level). In addition, the provider/
server 310 may be configured to notify the host 300 at
specific time intervals, regardless of event priority.

In one embodiment, the proxy server 325 of the host 300
can monitor/track responses received for the data request
from the content source for changed results prior to return-
ing the result to the mobile device, such monitoring may be
suitable when data request to the content source has yielded
same results to be returned to the mobile device, thus
preventing network/power consumption from being used
when no new changes are made to a particular requested.
The local proxy of the device 350 can instruct the proxy
server 325 to perform such monitoring or the proxy server
325 can automatically initiate such a process upon receiving
a certain number of the same responses (e.g., or a number of
the same responses in a period of time) for a particular
request.

In one embodiment, the server 300, through the activity/
behavior awareness module 366, is able to identify or detect
user activity at a device that is separate from the mobile
device 350. For example, the module 366 may detect that a
user’s message inbox (e.g., email or types of inbox) is being
accessed. This can indicate that the user is interacting with
his/her application using a device other than the mobile
device 350 and may not need frequent updates, if at all.

The server 300, in this instance, can thus decrease the
frequency with which new or updated content is sent to the
mobile device 350, or eliminate all communication for as
long as the user is detected to be using another device for
access. Such frequency decrease may be application specific
(e.g., for the application with which the user is interacting
with on another device), or it may be a general frequency
decrease (E.g., since the user is detected to be interacting

US 9,432,486 B2

51

with one server or one application via another device, he/she
could also use it to access other services.) to the mobile
device 350.

In one embodiment, the host server 300 is able to poll
content sources 310 on behalf of devices 350 to conserve
power or battery consumption on devices 350. For example,
certain applications on the mobile device 350 can poll its
respective server 310 in a predictable recurring fashion.
Such recurrence or other types of application behaviors can
be tracked by the activity/behavior module 366 in the proxy
controller 365. The host server 300 can thus poll content
sources 310 for applications on the mobile device 350 that
would otherwise be performed by the device 350 through a
wireless (e.g., including cellular connectivity). The host
server can poll the sources 310 for new or changed data by
way of the HTTP access engine 345 to establish HTTP
connection or by way of radio controller 396 to connect to
the source 310 over the cellular network. When new or
changed data is detected, the new data detector 347 can
notify the device 350 that such data is available and/or
provide the new/changed data to the device 350.

In one embodiment, the connection manager 395 deter-
mines that the mobile device 350 is unavailable (e.g., the
radio is turned off) and utilizes SMS to transmit content to
the device 350, for instance, via the SMSC shown in the
example of FIG. 1B. SMS is used to transmit invalidation
messages, batches of invalidation messages, or even content
in the case where the content is small enough to fit into just
a few (usually one or two) SMS messages. This avoids the
need to access the radio channel to send overhead informa-
tion. The host server 300 can use SMS for certain transac-
tions or responses having a priority level above a threshold
or otherwise meeting a criteria. The server 300 can also
utilize SMS as an out-of-band trigger to maintain or wake-
up an IP connection as an alternative to maintaining an
always-on [P connection.

In one embodiment, the connection manager 395 in the
proxy server 325 (e.g., the heartbeat manager 398) can
generate and/or transmit heartbeat messages on behalf of
connected devices 350 to maintain a backend connection
with a provider 310 for applications running on devices 350.

For example, in the distributed proxy system, local cache
on the device 350 can prevent any or all heartbeat messages
needed to maintain TCP/IP connections required for appli-
cations from being sent over the cellular, or other, network
and instead rely on the proxy server 325 on the host server
300 to generate and/or send the heartbeat messages to
maintain a connection with the backend (e.g., application
server/provider 110 in the example of FIG. 1A). The proxy
server can generate the keep-alive (heartbeat) messages
independent of the operations of the local proxy on the
mobile device.

The repositories 312, 314, and/or 316 can additionally
store software, descriptive data, images, system information,
drivers, and/or any other data item utilized by other com-
ponents of the host server 300 and/or any other servers for
operation. The repositories may be managed by a database
management system (DBMS), for example, which may be
but is not limited to Oracle, DB2, Microsoft Access, Micro-
soft SQL Server, PostgreSQL, MySQL, FileMaker, etc.

The repositories can be implemented via object-oriented
technology and/or via text files and can be managed by a
distributed database management system, an object-oriented
database management system (OODBMS) (e.g., Concept-
Base, FastDB Main Memory Database Management Sys-
tem, JDOInstruments, ObjectDB, etc.), an object-relational
database management system (ORDBMS) (e.g., Informix,

10

15

20

25

30

35

40

45

50

55

60

65

52
OpenLink Virtuoso, VMDS, etc.), a file system, and/or any
other convenient or known database management package.

FIG. 3B depicts a block diagram illustrating a further
example of components in the caching policy manager 355
in the cache system shown in the example of FIG. 3A which
is capable of caching and adapting caching strategies for
application (e.g., mobile application) behavior and/or net-
work conditions.

The caching policy manager 355, in one embodiment, can
further include a metadata generator 303, a cache look-up
engine 305, an application protocol module 356, a content
source monitoring engine 357 having a poll schedule man-
ager 358, a response analyzer 361, and/or an updated or new
content detector 359. In one embodiment, the poll schedule
manager 358 further includes a host timing simulator 358a,
a long poll request detector/manager 3584, a schedule
update engine 358¢, and/or a time adjustment engine 3584.
The metadata generator 303 and/or the cache look-up engine
305 can be coupled to the cache 335 (or, server cache) for
modification or addition to cache entries or querying thereof.

In one embodiment, the proxy server (e.g., the proxy
server 125 or 325 of the examples of FIG. 1B and FIG. 3A)
can monitor a content source for new or changed data via the
monitoring engine 357. The proxy server, as shown, is an
entity external to the mobile device 250 of FIGS. 2A-B. The
content source (e.g., application server/content provider 110
of FIG. 1B) can be one that has been identified to the proxy
server (e.g., by the local proxy) as having content that is
being locally cached on a mobile device (e.g., mobile device
150 or 250). The content source can be monitored, for
example, by the monitoring engine 357 at a frequency that
is based on polling frequency of the content source at the
mobile device. The poll schedule can be generated, for
example, by the local proxy and sent to the proxy server. The
poll frequency can be tracked and/or managed by the poll
schedule manager 358.

For example, the proxy server can poll the host (e.g.,
content provider/application server) on behalf of the mobile
device and simulate the polling behavior of the client to the
host via the host timing simulator 358a. The polling behav-
ior can be simulated to include characteristics of a long poll
request-response sequences experienced in a persistent con-
nection with the host (e.g., by the long poll request detector/
manager 3585). Note that once a polling interval/behavior is
set, the local proxy 275 on the device-side and/or the proxy
server 325 on the server-side can verify whether application
and application server/content host behavior match or can be
represented by this predicted pattern. In general, the local
proxy and/or the proxy server can detect deviations and,
when appropriate, re-evaluate and compute, determine, or
estimate another polling interval.

In one embodiment, the caching policy manager 355 on
the server-side of the distribute proxy can, in conjunction
with or independent of the proxy server 275 on the mobile
device, identify or detect long poll requests. For example,
the caching policy manager 355 can determine a threshold
value to be used in comparison with a response delay
interval time in a request-response sequence for an applica-
tion request to identify or detect long poll requests, possible
long poll requests (e.g., requests for a persistent connection
with a host with which the client communicates including,
but not limited to, a long-held HTTP request, a persistent
connection enabling COMET style push, request for HTTP
streaming, etc.), or other requests which can otherwise be
treated as a long poll request.

For example, the threshold value can be determined by the
proxy 325 using response delay interval times for requests

US 9,432,486 B2

53

generated by clients/applications across mobile devices
which may be serviced by multiple different cellular or
wireless networks. Since the proxy 325 resides on host 300
is able to communicate with multiple mobile devices via
multiple networks, the caching policy manager 355 has
access to application/client information at a global level
which can be used in setting threshold values to categorize
and detect long polls.

By tracking response delay interval times across applica-
tions across devices over different or same networks, the
caching policy manager 355 can set one or more threshold
values to be used in comparison with response delay interval
times for long poll detection. Threshold values set by the
proxy server 325 can be static or dynamic, and can be
associated with conditions and/or a time-to-live (an expira-
tion time/date in relative or absolute terms).

In addition, the caching policy manager 355 of the proxy
325 can further determine the threshold value, in whole or
in part, based on network delays of a given wireless network,
networks serviced by a given carrier (service provider), or
multiple wireless networks. The proxy 325 can also deter-
mine the threshold value for identification of long poll
requests based on delays of one or more application server/
content provider (e.g., 110) to which application (e.g.,
mobile application) or mobile client requests are directed.

The proxy server can detect new or changed data at a
monitored content source and transmits a message to the
mobile device notifying it of such a change such that the
mobile device (or the local proxy on the mobile device) can
take appropriate action (e.g., to invalidate the cache ele-
ments in the local cache). In some instances, the proxy
server (e.g., the caching policy manager 355) upon detecting
new or changed data can also store the new or changed data
in its cache (e.g., the server cache 135 or 335 of the
examples of FIG. 1B and FIG. 3A, respectively). The
new/updated data stored in the server cache 335 can be used
in some instances to satisfy content requests at the mobile
device; for example, it can be used after the proxy server has
notified the mobile device of the new/changed content and
that the locally cached content has been invalidated.

The metadata generator 303, similar to the metadata
generator 203 shown in the example of FIG. 2B, can
generate metadata for responses cached for requests at the
mobile device 250. The metadata generator 303 can generate
metadata for cache entries stored in the server cache 335.
Similarly, the cache look-up engine 305 can include the
same or similar functions are those described for the cache
look-up engine 205 shown in the example of FIG. 2B.

The response analyzer 361 can perform any or all of the
functionalities related to analyzing responses received for
requests generated at the mobile device 250 in the same or
similar fashion to the response analyzer 2464 of the local
proxy shown in the example of FIG. 2B. Since the proxy
server 325 is able to receive responses from the application
server/content source 310 directed to the mobile device 250,
the proxy server 325 (e.g., the response analyzer 361) can
perform similar response analysis steps to determine cache-
ability, as described for the response analyzer of the local
proxy. Examples of response analysis procedures are also
described in conjunction with the flow charts shown in the
examples of FIGS. 11-13. The responses can be analyzed in
addition to or in lieu of the analysis that can be performed
at the local proxy 275 on the mobile device 250.

Furthermore, the schedule update engine 358¢ can update
the polling interval of a given application server/content host
based on application request interval changes of the appli-
cation at the mobile device 250 as described for the schedule

10

15

20

25

30

35

40

45

50

55

60

65

54

update engine in the local proxy 275. The time adjustment
engine 3584 can set an initial time at which polls of the
application server/content host is to begin to prevent the
serving of out of date content once again before serving
fresh content as described for the schedule update engine in
the local proxy 275. Both the schedule updating and the time
adjustment algorithms can be performed in conjunction with
or in lieu of the similar processes performed at the local
proxy 275 on the mobile device 250.

FIG. 3C depicts a block diagram illustrating another
example of components in the caching policy manager 355
in the proxy server 375 on the server-side of the distributed
proxy system shown in the example of FIG. 3A which is
capable of managing and detecting cache defeating mecha-
nisms and monitoring content sources.

The caching policy manager 355, in one embodiment, can
further include a cache defeating source manager 352, a
content source monitoring engine 357 having a poll schedule
manager 358, and/or an updated or new content detector
359. The cache defeating source manager 352 can further
include an identifier modifier module 353 and/or an identi-
fier pattern tracking module 354.

In one embodiment, the proxy server (e.g., the proxy
server 125 or 325 of the examples of FIG. 1B and FIG. 3A)
can monitor a content source for new or changed data via the
monitoring engine 357. The content source (e.g., application
server/content provider 110 of FIG. 1B or 310 of FIG. 3A)
can be one that has been identified to the proxy server (e.g.,
by the local proxy) as having content that is being locally
cached on a mobile device (e.g., mobile device 150 or 250).
The content source 310 can be monitored, for example, by
the monitoring engine 357 at a frequency that is based on
polling frequency of the content source at the mobile device.
The poll schedule can be generated, for example, by the
local proxy and sent to the proxy server 325. The poll
frequency can be tracked and/or managed by the poll
schedule manager 358.

In one embodiment, the proxy server 325 uses a normal-
ized identifier or modified identifier in polling the content
source 310 to detect new or changed data (responses). The
normalized identifier or modified identifier can also be used
by the proxy server 325 in storing responses on the server
cache 335. In general, the normalized or modified identifiers
can be used when cache defeat mechanisms are employed
for cacheable content. Cache defeat mechanisms can be in
the form of a changing parameter in an identifier such as a
URI or URL and can include a changing time/data param-
eter, a randomly varying parameter, or other types param-
eters.

The normalized identifier or modified identifier removes
or otherwise replaces the changing parameter for association
with subsequent requests and identification of associated
responses and can also be used to poll the content source. In
one embodiment, the modified identifier is generated by the
cache defeating source manager 352 (e.g., the identifier
modifier module 353) of the caching policy manager 355 on
the proxy server 325 (server-side component of the distrib-
uted proxy system). The modified identifier can utilize a
substitute parameter (which is generally static over a period
of time) in place of the changing parameter that is used to
defeat cache.

The cache defeating source manager 352 optionally
includes the identifier pattern tracking module 354 to track,
store, and monitor the various modifications of an identifier
or identifiers that address content for one or more content
sources (e.g., application server/content host 110 or 310) to
continuously verify that the modified identifiers and/or nor-

US 9,432,486 B2

55

malized identifiers used by the proxy server 325 to poll the
content sources work as predicted or intended (e.g., receive
the same responses or responses that are otherwise still
relevant compared to the original, unmodified identifier).

In the event that the pattern tracking module 354 detects
a modification or normalization of an identifier that causes
erratic or unpredictable behavior (e.g., unexpected responses
to be sent) on the content source, the tracking module 354
can log the modification and instruct the cache defeating
source manager 352 to generate another modification/nor-
malization, or notify the local proxy (e.g., local proxy 275)
to generate another modification/normalization for use in
polling the content source. In the alternative or in parallel,
the requests from the given mobile application/client on the
mobile device (e.g., mobile device 250) can temporarily be
sent across the network to the content source for direct
responses to be provided to the mobile device and/or until a
modification of an identifier which works can be generated.

In one embodiment, responses are stored as server cache
elements in the server cache when new or changed data is
detected for a response that is already stored on a local cache
(e.g., cache 285) of the mobile device (e.g., mobile device
250). Therefore, the mobile device or local proxy 275 can
connect to the proxy server 325 to retrieve the new or
changed data for a response to a request which was previ-
ously cached locally in the local cache 285 (now invalid,
out-dated, or otherwise determined to be irrelevant).

The proxy server 325 can detect new or changed data at
a monitored application server/content host 310 and trans-
mits a message to the mobile device notifying it of such a
change such that the mobile device (or the local proxy on the
mobile device) can take appropriate action (e.g., to invali-
date the cache elements in the local cache). In some
instances, the proxy server (e.g., the caching policy manager
355), upon detecting new or changed data, can also store the
new or changed data in its cache (e.g., the server cache 135
or 335 of the examples of FIG. 1B and FIG. 3A, respec-
tively). The updated/new data stored in the server cache can
be used, in some instances, to satisfy content requests at the
mobile device; for example, it can be used after the proxy
server has notified the mobile device of the new/changed
content and that the locally cached content has been invali-
dated.

FIG. 3D depicts a block diagram illustrating examples of
additional components in proxy server 325 shown in the
example of FIG. 3A which is further capable of performing
mobile traffic categorization and policy implementation
based on application behavior and/or traffic priority.

In one embodiment of the proxy server 325, the traffic
shaping engine 375 is further coupled to a traffic analyzer
336 for categorizing mobile traffic for policy definition and
implementation for mobile traffic and transactions directed
to one or more mobile devices (e.g., mobile device 250 of
FIGS. 2A-2D) or to an application server/content host (e.g.,
110 of FIGS. 1A-1B). In general, the proxy server 325 is
remote from the mobile devices and remote from the host
server, as shown in the examples of FIGS. 1A-1B. The proxy
server 325 or the host server 300 can monitor the traffic for
multiple mobile devices and is capable of categorizing traffic
and devising traffic policies for different mobile devices.

In addition, the proxy server 325 or host server 300 can
operate with multiple carriers or network operators and can
implement carrier-specific policies relating to categorization
of traffic and implementation of traffic policies for the
various categories. For example, the traffic analyzer 336 of
the proxy server 325 or host server 300 can include one or
more of, a prioritization engine 341a, a time criticality

10

15

20

25

30

35

40

45

50

55

60

65

56

detection engine 34154, an application state categorizer 341c,
and/or an application traffic categorizer 341d.

Each of these engines or modules can track different
criterion for what is considered priority, time critical, back-
ground/foreground, or interactive/maintenance based on dif-
ferent wireless carriers. Different criterion may also exist for
different mobile device types (e.g., device model, manufac-
turer, operating system, etc.). In some instances, the user of
the mobile devices can adjust the settings or criterion
regarding traffic category and the proxy server 325 is able to
track and implement these user adjusted/configured settings.

In one embodiment, the traffic analyzer 336 is able to
detect, determined, identify, or infer, the activity state of an
application on one or more mobile devices (e.g., mobile
device 150 or 250) which traffic has originated from or is
directed to, for example, via the application state categorizer
341c¢ and/or the traffic categorizer 341d. The activity state
can be determined based on whether the application is in a
foreground or background state on one or more of the mobile
devices (via the application state categorizer 341c¢) since the
traffic for a foreground application vs. a background appli-
cation may be handled differently to optimize network use.

In the alternate or in combination, the activity state of an
application can be determined by the wirelessly connected
mobile devices (e.g., via the application behavior detectors
in the local proxies) and communicated to the proxy server
325. For example, the activity state can be determined,
detected, identified, or inferred with a level of certainty of
heuristics, based on the backlight status at mobile devices
(e.g., by a backlight detector) or other software agents or
hardware sensors on the mobile device, including but not
limited to, resistive sensors, capacitive sensors, ambient
light sensors, motion sensors, touch sensors, etc. In general,
if the backlight is on, the traffic can be treated as being or
determined to be generated from an application that is active
or in the foreground, or the traffic is interactive. In addition,
if the backlight is on, the traffic can be treated as being or
determined to be traffic from user interaction or user activity,
or traffic containing data that the user is expecting within
some time frame.

The activity state can be determined from assessing,
determining, evaluating, inferring, identifying user activity
at the mobile device 250 (e.g., via the user activity module
215) and communicated to the proxy server 325. In one
embodiment, the activity state is determined based on
whether the traffic is interactive traffic or maintenance
traffic. Interactive traffic can include transactions from
responses and requests generated directly from user activity/
interaction with an application and can include content or
data that a user is waiting or expecting to receive. Mainte-
nance traffic may be used to support the functionality of an
application which is not directly detected by a user. Main-
tenance traffic can also include actions or transactions that
may take place in response to a user action, but the user is
not actively waiting for or expecting a response.

The time criticality detection engine 34156 can generally
determine, identify, infer the time sensitivity of data con-
tained in traffic sent from the mobile device 250 or to the
mobile device from the host server 300 or proxy server 325,
or the application server (e.g., app server/content source
110). For example, time sensitive data can include, status
updates, stock information updates, IM presence informa-
tion, email messages or other messages, actions generated
from mobile gaming applications, webpage requests, loca-
tion updates, etc.

Data that is not time sensitive or time critical, by nature
of the content or request, can include requests to delete

US 9,432,486 B2

57

messages, mark-as-read or edited actions, application-spe-
cific actions such as a add-friend or delete-friend request,
certain types of messages, or other information which does
not frequently changing by nature, etc. In some instances
when the data is not time critical, the timing with which to
allow the traffic to be sent to a mobile device is based on
when there is additional data that needs to the sent to the
same mobile device. For example, traffic shaping engine 375
can align the traffic with one or more subsequent transac-
tions to be sent together in a single power-on event of the
mobile device radio (e.g., using the alignment module 378
and/or the batching module 377). The alignment module 378
can also align polling requests occurring close in time
directed to the same host server, since these request are
likely to be responded to with the same data.

In general, whether new or changed data is sent from a
host server to a mobile device can be determined based on
whether an application on the mobile device to which the
new or changed data is relevant, is running in a foreground
(e.g., by the application state categorizer 341c), or the
priority or time criticality of the new or changed data. The
proxy server 325 can send the new or changed data to the
mobile device if the application is in the foreground on the
mobile device, or if the application is in the foreground and
in an active state interacting with a user on the mobile
device, and/or whether a user is waiting for a response that
would be provided in the new or changed data. The proxy
server 325 (or traffic shaping engine 375) can send the new
or changed data that is of a high priority or is time critical.

Similarly, the proxy server 325 (or the traffic shaping
engine 375) can suppressing the sending of the new or
changed data if the application is in the background on the
mobile device. The proxy server 325 can also suppress the
sending of the new or changed data if the user is not waiting
for the response provided in the new or changed data;
wherein the suppressing is performed by a proxy server
coupled to the host server and able to wirelessly connect to
the mobile device.

In general, if data, including new or change data is of a
low priority or is not time critical, the proxy server can
waiting to transfer the data until after a time period, or until
there is additional data to be sent (e.g. via the alignment
module 378 and/or the batching module 377).

FIG. 4A depicts a block diagram illustrating another
example of client-side components in a distributed proxy
and cache system, further including a compression manager
401. FIG. 4B depicts a block diagram illustrating additional
components in the compression manager 401 shown in the
example of FIG. 4A.

In one embodiment, the local proxy 275 of FIG. 4A
includes the compression manager 401 having an encoder
405, a header generator 406, a compression dictionary
manager 407, and/or a decoder 415 having a header extrac-
tion engine 416 and/or a compression dictionary application
module 418. Additional or less components/modules/en-
gines can be included in the compression manager 401 and
each illustrated component.

As described in the process of FIG. 23, the compression
manager 401 can compress a data stream to be transmitted
to a recipient (e.g., proxy server 325). Since most of the
information on the Internet is in “chunks” (e.g. a continuous
stream of discretely sized items), a data stream can also be
compressed in individual chunks. This enables each data
chunk to be pre-compressed (e.g., by the encoder 405) and
compared with the uncompressed version to determine
whether the compression made the content smaller in size.
The compression manager 401 can transmit the smaller of

15

25

40

45

50

58

the compressed and uncompressed version of each data
chunk in a data stream. This can ensure that the smallest
version of a given data chunk, compressed or not is the one
that is sent.

If the compressed version is transmitted, a header indi-
cating such can be generated (e.g., by the header generator
406) and/or transmitted with the data chunk or data stream
such that the receiver end can identify which portions or data
chucks in a given data stream were compressed and which
were not. Note that compressing each block changes the
state of the dictionary or key used by the receiving end (e.g.,
proxy server 325 receives compressed data sent by the local
proxy 275) to decode the data. As such, the compression
dictionary can be updated (e.g., by the compression diction-
ary manager 407) when the compressed data chunk is
smaller than the uncompressed version.

By indicating the state with the header (e.g., compressed
or not) and applying the dictionary (e.g., by the application
module 418) only when sending compressed content, this
allows the receiver and the sender’s compression dictionary
to maintain synchronization across compressible and non-
compressable chunks and eliminates the need to transmit the
additional overhead with each chunk—this improves the
overall compression ratios for small chunks of data. This
strategy also prevents the dictionary from adapting to data
with high entropy (even temporally) and allows self-tuning
to compressible data, further enhancing the achievable com-
pression ratio.

The decoder 415 decodes compressed data received from
a sender (e.g., the proxy server 325). The decoder 415 can
also parse a data stream of partially compressed data using
the header extraction engine 416 to identify the data chunks
that are compressed and the data chunks that were sent
uncompressed. Using this identification and parsing of com-
pressed and uncompressed data chunks, the compression
dictionary application module 418 can be used to decode/
decompress the compressed data chunks.

Some or all of the above functions and features can be
implemented wholly or partially on a server side (e.g., via
the server side compression manager 501 as illustrated in
FIG. 5A-FIG. 5B) and performed partially or wholly by the
server-side components in the compression manager 501.
The compression manager 401 on the client-side and com-
pression manager 501 on the server-side both include
encoder and decoder components since each includes send
and receive functions.

FIG. 5A depicts a block diagram illustrating an example
of server-side components in a distributed proxy and cache
system, further including a compression manager 501. FIG.
5B depicts a block diagram illustrating additional compo-
nents in the compression manager 501 shown in the example
of FIG. 5A. In one embodiment, the proxy server 325 of
FIG. 5A includes the compression manager 501 having an
encoder 505, a header generator 506, a compression dic-
tionary manager 507, and/or a decoder 515 having a header
extraction engine 516 and/or a compression dictionary appli-
cation module 518. Additional or less components/modules/
engines can be included in the compression manager 501
and each illustrated component. Functionalities of each
component are similarly described with respect to the same/
similar components shown on the client-side compression
manager 401 in the examples of FIG. 4A-FIG. 4B.

FIG. 6A depicts another flow diagram illustrating an
example process for distributed content caching between a
mobile device and a proxy server and the distributed man-
agement of content caching.

US 9,432,486 B2

59

As shown in the distributed system interaction diagram in
the example of FIG. 4, the disclosed technology is a dis-
tributed caching model with various aspects of caching tasks
split between the client-side/mobile device side (e.g., mobile
device 450 in the example of FIG. 4) and the server side
(e.g., server side 470 including the host server 485 and/or the
optional caching proxy 475).

In general the device-side responsibilities can include
deciding whether a response to a particular request can be
and/or should be cached. The device-side of the proxy can
make this decision based on information (e.g., timing char-
acteristics, detected pattern, detected pattern with heuristics,
indication of predictability or repeatability) collected from/
during both request and response and cache it (e.g., storing
it in a local cache on the mobile device). The device side can
also notify the server-side in the distributed cache system of
the local cache event and notify it monitor the content source
(e.g., application server/content provider 110 of FIGS.
1A-B).

The device side can further instruct the server side of the
distributed proxy to periodically validate the cache response
(e.g., by way of polling, or sending polling requests to the
content source). The device side can further decide whether
a response to a particular cache request should be returned
from the local cache (e.g., whether a cache hit is detected).
The decision can be made by the device side (e.g., the local
proxy on the device) using information collected from/
during request and/or responses received from the content
source.

In general, the server-side responsibilities can include
validating cached responses for relevancy (e.g., determine
whether a cached response is still valid or relevant to its
associated request). The server-side can send the mobile
device an invalidation request to notify the device side when
a cached response is detected to be no longer valid or no
longer relevant (e.g., the server invalidates a given content
source). The device side then can remove the response from
the local cache.

The diagram of FIG. 6A illustrates caching logic pro-
cesses performed for each detected or intercepted request
(e.g., HTTP request) detected at a mobile device (e.g.,
client-side of the distributed proxy). In step 602, the client-
side of the proxy (e.g., local proxy 275 shown in FIGS.
2A-B or mobile device 450 of FIG. 4) receives a request
(from an application (e.g., mobile application) or mobile
client). In step 604, URL is normalized and in step 606 the
client-side checks to determine if the request is cacheable. If
the request is determined to be not cacheable in step 612, the
request is sent to the source (application server/content
provider) in step 608 and the response is received 610 and
delivered to the requesting application 622, similar to a
request-response sequence without interception by the client
side proxy.

If the request is determined to be cacheable, in step 612,
the client-side looks up the cache to determine whether a
cache entry exists for the current request. If so, in step 624,
the client-side can determine whether the entry is valid and
if so, the client side can check the request to see if includes
a validator (e.g., a modified header or an entity tag) in step
615. For example, the concept of validation is eluded to in
section 13.3 of RFC 2616 which describes in possible types
of headers (e.g., €eTAG, Modified_Since, must_revlaidate,
pragma no_cache) and forms a validating response 632 if so
to be delivered to the requesting application in step 622. If
the request does not include a validator as determined by
step 615, a response is formed from the local cache in step
630 and delivered to the requesting application in step 622.

10

15

20

25

30

35

40

45

50

55

60

65

60

This validation step can be used for content that would
otherwise normally be considered un-cacheable.

If, instead, in step 624, the cache entry is found but
determined to be no longer valid or invalid, the client side
of the proxy sends the request 616 to the content source
(application server/content host) and receives a response
directly fro the source in step 618. Similarly, if in step 612,
a cache entry was not found during the look up, the request
is also sent in step 616. Once the response is received, the
client side checks the response to determine if it is cacheable
in step 626. If so, the response is cached in step 620. The
client then sends another poll in step 614 and then delivers
the response to the requesting application in step 622.

FIG. 6B depicts a diagram showing how data requests
from a mobile device 450 to an application server/content
provider 495 in a wireless network can be coordinated by a
distributed proxy system 460 in a manner such that network
and battery resources are conserved through using content
caching and monitoring performed by the distributed proxy
system 460.

In satisfying application or client requests on a mobile
device 450 without the distributed proxy system 460, the
mobile device 450, or the software widget executing on the
device 450, performs a data request 452 (e.g., an HTTP
GET, POST, or other request) directly to the application
server 495 and receives a response 404 directly from the
server/provider 495. If the data has been updated, the widget
455 on the mobile device 450 can refreshes itself to reflect
the update and waits for small period of time and initiates
another data request to the server/provider 495.

In one embodiment, the requesting client or software
widget 455 on the device 450 can utilize the distributed
proxy system 460 in handling the data request made to
server/provider 495. In general, the distributed proxy system
460 can include a local proxy 465 (which is typically
considered a client-side component of the system 460 and
can reside on the mobile device 450), a caching proxy 475
(considered a server-side component 470 of the system 460
and can reside on the host server 485 or be wholly or
partially external to the host server 485), and a host server
485. The local proxy 465 can be connected to the caching
proxy 475 and host server 485 via any network or combi-
nation of networks.

When the distributed proxy system 460 is used for data/
application requests, the widget 455 can perform the data
request 456 via the local proxy 465. The local proxy 465,
can intercept the requests made by device applications, and
can identify the connection type of the request (e.g., an
HTTP get request or other types of requests). The local
proxy 465 can then query the local cache for any previous
information about the request (e.g., to determine whether a
locally stored response is available and/or still valid). If a
locally stored response is not available or if there is an
invalid response stored, the local proxy 465 can update or
store information about the request, the time it was made,
and any additional data, in the local cache. The information
can be updated for use in potentially satisfying subsequent
requests.

The local proxy 465 can then send the request to the host
server 485 and the host server 485 can perform the request
456 and returns the results in response 458. The local proxy
465 can store the result and, in addition, information about
the result and returns the result to the requesting widget 455.

In one embodiment, if the same request has occurred
multiple times (within a certain time period) and it has often
yielded same results, the local proxy 465 can notify 460 the
server 485 that the request should be monitored (e.g., steps

US 9,432,486 B2

61

462 and 464) for result changes prior to returning a result to
the local proxy 465 or requesting widget 455.

In one embodiment, if a request is marked for monitoring,
the local proxy 465 can now store the results into the local
cache. Now, when the data request 466, for which a locally
response is available, is made by the widget 455 and
intercepted at the local proxy 465, the local proxy 465 can
return the response 468 from the local cache without need-
ing to establish a connection communication over the wire-
less network.

In addition, the server proxy performs the requests
marked for monitoring 470 to determine whether the
response 472 for the given request has changed. In general,
the host server 485 can perform this monitoring indepen-
dently of the widget 455 or local proxy 465 operations.
Whenever an unexpected response 472 is received for a
request, the server 485 can notify the local proxy 465 that the
response has changed (e.g., the invalidate notification in step
474) and that the locally stored response on the client should
be erased or replaced with a new response.

In this case, a subsequent data request 476 by the widget
455 from the device 450 results in the data being returned
from host server 485 (e.g., via the caching proxy 475), and
in step 478, the request is satisfied from the caching proxy
475. Thus, through utilizing the distributed proxy system
460, the wireless (cellular) network is intelligently used
when the content/data for the widget or software application
455 on the mobile device 450 has actually changed. As such,
the traffic needed to check for the changes to application data
is not performed over the wireless (cellular) network. This
reduces the amount of generated network traffic and shortens
the total time and the number of times the radio module is
powered up on the mobile device 450, thus reducing battery
consumption and, in addition, frees up network bandwidth.

FIG. 7 depicts a table 700 showing examples of different
traffic or application category types which can be used in
implementing network access and content delivery policies.
For example, traffic/application categories can include inter-
active or background, whether a user is waiting for the
response, foreground/background application, and whether
the backlight is on or off.

FIG. 8 depicts a table 800 showing examples of different
content category types which can be used in implementing
network access and content delivery policies. For example,
content category types can include content of high or low
priority, and time critical or non-time critical content/data.

FIG. 9 depicts an interaction diagram showing how appli-
cation (e.g., mobile application) 955 polls having data
requests from a mobile device to an application server/
content provider 995 over a wireless network can be can be
cached on the local proxy 965 and managed by the distrib-
uted caching system (including local proxy 965 and the host
server 985 (having server cache 935 or caching proxy server
975)).

In one example, when the mobile application/widget 955
polls an application server/provider 932, the poll can locally
be intercepted 934 on the mobile device by local proxy 965.
The local proxy 965 can detect that the cached content is
available for the polled content in the request and can thus
retrieve a response from the local cache to satisfy the
intercepted poll 936 without requiring use of wireless net-
work bandwidth or other wireless network resources. The
mobile application/widget 955 can subsequently receive a
response to the poll from a cache entry 938.

In another example, the mobile application widget 955
polls the application server/provider 940. The poll is inter-
cepted 942 by the local proxy 965 and detects that cache

5

10

15

20

25

30

35

40

45

50

55

60

65

62

content is unavailable in the local cache and decides to set
up the polled source for caching 944. To satisfy the request,
the poll is forwarded to the content source 946. The appli-
cation server/provider 995 receives the poll request from the
application and provides a response to satisfy the current
request 948. In 950, the application (e.g., mobile applica-
tion)/widget 955 receives the response from the application
server/provider to satisfy the request.

In conjunction, in order to set up content caching, the
local proxy 965 tracks the polling frequency of the appli-
cation and can set up a polling schedule to be sent to the host
server 952. The local proxy sends the cache set up to the host
server 954. The host server 985 can use the cache set up
which includes, for example, an identification of the appli-
cation server/provider to be polled and optionally a polling
schedule 956. The host server 985 can now poll the appli-
cation server/provider 995 to monitor responses to the
request 958 on behalf of the mobile device. The application
server receives the poll from the host server and responds
960. The host server 985 determines that the same response
has been received and polls the application server 995
according to the specified polling schedule 962. The appli-
cation server/content provider 995 receives the poll and
responds accordingly 964.

The host server 985 detects changed or new responses and
notifies the local proxy 965. The host server 985 can
additional store the changed or new response in the server
cache or caching proxy 968. The local proxy 965 receives
notification from the host server 985 that new or changed
data is now available and can invalidate the affected cache
entries 970. The next time the application (e.g., mobile
application)/widget 955 generates the same request for the
same server/content provider 972, the local proxy deter-
mines that no valid cache entry is available and instead
retrieves a response from the server cache 974, for example,
through an HTTP connection. The host server 985 receives
the request for the new response and sends the response back
976 to the local proxy 965. The request is thus satisfied from
the server cache or caching proxy 978 without the need for
the mobile device to utilize its radio or to consume mobile
network bandwidth thus conserving network resources.

Alternatively, when the application (e.g., mobile applica-
tion) generates the same request in step 980, the local proxy
965, in response to determining that no valid cache entry is
available, forwards the poll to the application server/pro-
vider in step 982 over the mobile network. The application
server/provider 995 receives the poll and sends the response
back to the mobile device in step 984 over the mobile
network. The request is thus satisfied from the server/
provider using the mobile network in step 986.

FIG. 10 depicts an interaction diagram showing how
application 1055 polls for content from an application
server/content provider 1095 which employs cache-defeat-
ing mechanisms in content identifiers (e.g., identifiers
intended to defeat caching) over a wireless network can still
be detected and locally cached.

In one example, when the application (e.g., mobile appli-
cation)/widget 1055 polls an application server/provider in
step 1032, the poll can locally be intercepted in step 1034 on
the mobile device by local proxy 1065. In step 1034, the
local proxy 1065 on the mobile device may also determine
(with some level of certainty and heuristics) that a cache
defeating mechanism is employed or may be employed by
the server provider.

The local proxy 1065 can detect that the cached content
is available for the polled content in the request and can thus
retrieve a response from the local cache to satisfy the

US 9,432,486 B2

63

intercepted poll 1036 without requiring use of wireless
network bandwidth or other wireless network resources. The
application (e.g., mobile application)/widget 1055 can sub-
sequently receive a response to the poll from a cache entry
in step 1038 (e.g., a locally stored cache entry on the mobile
device).

In another example, the application (e.g., mobile appli-
cation) widget 1055 polls the application server/provider
1095 in step 1040. The poll is intercepted in step 1042 by the
local proxy 1065 which determines that a cache defeat
mechanism is employed by the server/provider 1095. The
local proxy 1065 also detects that cached content is unavail-
able in the local cache for this request and decides to setup
the polled content source for caching in step 1044. The local
proxy 1065 can then extract a pattern (e.g., a format or
syntax) of an identifier of the request and track the polling
frequency of the application to setup a polling schedule of
the host server 1085 in step 1046.

To satisfy the request, the poll request is forwarded to the
content provider 1095 in step 1048. The application server/
provider 1095 receives the poll request from the application
and provides a response to satisfy the current request in step
1050. In step 1052, the application (e.g., mobile applica-
tion)/widget 1055 receives the response from the application
server/provider 1095 to satisfy the request.

In conjunction, in order to setup content caching, the local
proxy 1065 caches the response and stores a normalized
version of the identifier (or a hash value of the normalized
identifier) in association with the received response for
future identification and retrieval in step 1054. The local
proxy sends the cache setup to the host server 1085 in step
1056. The cache setup includes, for example, the identifier
and/or a normalized version of the identifier. In some
instances, a modified identifier, different from the normal-
ized identifier, is sent to the host server 1085.

The host server 1085 can use the cache setup, which
includes, for example, an identification of the application
server/provider to be polled and optionally a polling sched-
ule in step 1058. The host server 1085 can now poll the
application server/provider 1095 to monitor responses to the
request in step 1060 on behalf of the mobile device. The
application server 1095 receives the poll from the host
server 1085 responds in step 1062. The host server 1085
determines that the same response has been received and
polls the application server 1095, for example, according to
the specified polling schedule and using the normalized or
modified identifier in step 1064. The application server/
content provider 1095 receives the poll and responds accord-
ingly in step 1066.

This time, the host server 1085 detects changed or new
responses and notifies the local proxy 1065 in step 1068. The
host server 1085 can additionally store the changed or new
response in the server cache 1035 or caching proxy 1075 in
step 1070. The local proxy 1065 receives notification from
the host server 1085 that new or changed data is now
available and can invalidate the affected cache entries in step
1072. The next time the application (e.g., mobile applica-
tion)/widget generates the same request for the same server/
content provider 1095 in step 1074, the local proxy 1065
determines that no valid cache entry is available and instead
retrieves a response from the server cache in step 1076, for
example, through an HTTP connection. The host server
1085 receives the request for the new response and sends the
response back to the local proxy 1065 in step 1078. The
request is thus satisfied from the server cache or caching
proxy in step 1080 without the need for the mobile device to

25

30

40

45

50

64

utilize its radio or to consume mobile network bandwidth
thus conserving network resources.

Alternatively, when the application (e.g., mobile applica-
tion) 1055 generates the same request, the local proxy 1065,
in response to determining that no valid cache entry is
available in step 1084, forwards the poll to the application
server provider 1095 in step 1082 over the mobile network.
The application server/provider 1095 receives the poll and
sends the response back to the mobile device in step 1086
over the mobile network. The request is thus satisfied from
the server/provider using the mobile network 1086 in step
1088.

FIG. 11 depicts a flow chart illustrating an example
process for collecting information about a request and the
associated response to identify cacheability and caching the
response.

In process 1102, information about a request and infor-
mation about the response received for the request is col-
lected. In processes 1104 and 1106, information about the
request initiated at the mobile device and information about
the response received for the request are used in aggregate
or independently to determine cacheability at step 1108. The
details of the steps for using request and response informa-
tion for assessing cacheability are illustrated at flow A as
further described in the example of FIG. 12.

In step 1108, if based on flow A it is determined that the
response is not cacheable, then the response is not cached in
step 1110, and the flow can optionally restart at 1102 to
collect information about a request or response to again
assess cacheability.

In step 1108, if it is determined from flow A that the
response is cacheable, then in 1112 the response can be
stored in the cache as a cache entry including metadata
having additional information regarding caching of the
response. The cached entry, in addition to the response,
includes metadata having additional information regarding
caching of the response. The metadata can include timing
data including, for example, access time of the cache entry
or creation time of the cache entry.

After the response is stored in the cache, a parallel process
can occur to determine whether the response stored in the
cache needs to be updated in process 1120. If so, the
response stored in the cache of the mobile device is inva-
lided or removed from the cache of the mobile device, in
process 1122. For example, relevance or validity of the
response can be verified periodically by polling a host server
to which the request is directed on behalf of the mobile
device. The host server can be polled at a rate determined at
the mobile device using request information collected for the
request for which the response is cached. The rate is deter-
mined from averages of time intervals between previous
requests generated by the same client which generated the
request.

The verifying can be performed by an entity that is
physically distinct from the mobile device. In one embodi-
ment, the entity is a proxy server coupled to the mobile
device and able to communicate wirelessly with the mobile
device and the proxy server polls a host server to which the
request is directed at the rate determined at the mobile
device based on timing intervals between previous requests
generated by the same client which generated the request.

In process 1114, a subsequent request for the same client
or application is detected. In process 1116, cache look-up in
the local cache is performed to identify the cache entry to be
used in responding to the subsequent request. In one
embodiment, the metadata is used to determine whether the
response stored as the cached entry is used to satisfy the

US 9,432,486 B2

65

subsequent response. In process 1118, the response can be
served from the cache to satisfy a subsequent request. The
response can be served in response to identifying a matching
cache entry for the subsequent request determined at least in
part using the metadata.

FIG. 12 depicts a flow chart illustrating an example
process for a decision flow to determine whether a response
to a request can be cached.

Process 1202 determines if the request is directed to a
blacklisted destination. If so, the response is not cached, in
step 1285. If a blacklisted destination is detected, or if the
request itself is associated with a blacklisted application, the
remainder of the analysis shown in the figure may not be
performed. The process can continue to steps 1204 and 1206
if the request and its destination are not blacklisted.

In process 1204, request characteristics information asso-
ciated with the request is analyzed. In analyzing the request,
in process 1208, the request method is identified and in step
1214, it is determined whether the response can be cached
based on the request method. If an uncacheable request is
detected, the request is not cached and the process may
terminate at process 1285. If the request method is deter-
mined to be cacheable, or not uncacheable, then the response
can be identified as cacheable or potentially cacheable (e.g.,
cacheable but subject to the other tests and analysis shown
in the figure) at step 1295.

In process 1210, the size of the request is determined. In
process 1216, it is determined whether the request size
exceeds a cacheable size. If so, the response is not cached
and the analysis may terminate here at process 1285. If the
request size does not exceed a cacheable size in step 1216,
then the response can be identified as cacheable or poten-
tially cacheable (e.g., cacheable but subject to the other tests
and analysis shown in the figure) at step 1295.

In step 1212, the periodicity information between the
request and other requests generated by the same client is
determined. In step 1218, it is determined whether period-
icity has been identified. If not, the response is not cached
and the analysis may terminate here at process 1285. If so,
then the response can be identified as cacheable or poten-
tially cacheable (e.g., cacheable but subject to the other tests
and analysis shown in the figure) at step 1295.

In process 1206, the request characteristics information
associated with the response received for the request is
analyzed.

In process 1220, the status code is identified and deter-
mined whether the status code indicates a cacheable
response status code in process 1228. If an uncacheable
status code is detected, the request is not cached and the
process may terminate at process 1285. If the response status
code indicates cacheability, or not uncacheable, then the
response can be identified as cacheable or potentially cache-
able (e.g., cacheable but subject to the other tests and
analysis shown in the figure) at step 1295.

In process 1222, the size of the response is determined. In
process 1230, it is determined whether the response size
exceeds a cacheable size. If so, the response is not cached
and the analysis may terminate here at process 1285. If the
response size does not exceed a cacheable size in step 1230,
then the response can be identified as cacheable or poten-
tially cacheable (e.g., cacheable but subject to the other tests
and analysis shown in the figure) at step 1295.

In process 1224, the response body is analyzed. In process
1232, it is determined whether the response contains
dynamic content or highly dynamic content. Dynamic con-
tent includes data that changes with a high frequency and/or
has a short time to live or short time of relevance due to the

5

10

15

20

25

30

35

40

45

50

55

60

65

66

inherence nature of the data (e.g., stock quotes, sports scores
of fast pace sporting events, etc.). If so, the response is not
cached and the analysis may terminate here at process 1285.
If not, then the response can be identified as cacheable or
potentially cacheable (e.g., cacheable but subject to the other
tests and analysis shown in the figure) at step 1295.

Process 1226 determines whether transfer encoding or
chunked transfer encoding is used in the response. If so, the
response is not cached and the analysis may terminate here
at process 1285. If not, then the response can be identified
as cacheable or potentially cacheable (e.g., cacheable but
subject to the other tests and analysis shown in the figure) at
step 1295.

Not all of the tests described above need to be performed
to determined whether a response is cached. Additional tests
not shown may also be performed. Note that any of the tests
1208, 1210, 1212, 1220, 1222, 1224, and 1226 can be
performed, singly or in any combination to determine cache-
ability. In some instances, all of the above tests are per-
formed. In some instances, all tests performed (any number
of the above tests that are actually performed) need to
confirm cacheability for the response to be determined to be
cacheable. In other words, in some cases, if any one of the
above tests indicate non-cacheability, the response is not
cached, regardless of the results of the other tests. In other
cases, different criteria can be used to determine which tests
or how many tests need to pass for the system to decide to
cache a given response, based on the combination of request
characteristics and response characteristics.

FIG. 13 depicts a flow chart illustrating an example
process for determining potential for cacheability based on
request periodicity and/or response repeatability.

In process 1302, requests generated by the client are
tracked to detect periodicity of the requests. In process 1306,
it is determined whether there are predictable patterns in the
timing of the requests. If so, the response content may be
cached in process 1395. If not, in process 1308 it is deter-
mined whether the request intervals fall within a tolerance
level. If so, the response content may be cached in process
1395. If not, the response is not cached in process 1385.

In process 1304, responses received for requests gener-
ated by the client are tracked to detect repeatability in
content of the responses. In process 1310, hash values of
response bodies of the responses received for the client are
examined and in process 1312 the status codes associated
with the responses are examined. In process 1314, it is
determined whether there is similarity in the content of at
least two of the responses using hash values and/or the status
codes. If so, the response may be cached in process 1395. If
not, the response is not cached in 1385.

FIG. 14 depicts a flow chart illustrating an example
process for dynamically adjusting caching parameters for a
given request or client.

In process 1402, requests generated by a client or directed
to a host are tracked at the mobile device to detect period-
icity of the requests. Process 1404 determines if the request
intervals between the two or more requests are the same or
approximately the same. In process 1406, it is determined
that the request intervals between the two or more requests
fall within the tolerance level.

Based on the results of steps 1404 and 1406, the response
for the requests for which periodicity is detected is received
in process 1408.

In process 1412, a response is cached as a cache entry in
a cache of the mobile device. In process 1414, the host is
monitored at a rate to verify relevance or validity of the

US 9,432,486 B2

67

cache entry, and simultaneously, in process 1416, the
response can be served from the cache to satisfy a subse-
quent request.

In process 1410, a rate to monitor a host is determined
from the request interval, using, for example, the results of
processes 1404 and/or 1406. In process 1420, the rate at
which the given host is monitored is set to verify relevance
or validity of the cache entry for the requests. In process
1422, a change in request intervals for requests generated by
the client is detected. In process 1424, a different rate is
computed based on the change in request intervals. The rate
at which the given host is monitored to verify relevance or
validity of the cache entry for the requests is updated in step
1420.

FIG. 15 depicts a flow chart illustrating example pro-
cesses for application and/or traffic (data) categorization
while factoring in user activity and expectations for imple-
mentation of network access and content delivery policies.

In process 1502, a system or server detects that new or
changed data is available to be sent to a mobile device. The
data, new, changed, or updated, can include one or more of,
IM presence updates, stock ticker updates, weather updates,
mail, text messages, news feeds, friend feeds, blog entries,
articles, documents, any multimedia content (e.g., images,
audio, photographs, video, etc.), or any others that can be
sent over HTTP or wireless broadband networks, either to be
consumed by a user or for use in maintaining operation of an
end device or application.

In process 1504, the application to which the new or
changed data is directed is identified. In process 1506, the
application is categorized based on the application. In pro-
cess 1508, the priority or time criticality of the new or
changed data is determined. In process 1510, the data is
categorized. Based on the information determined from the
application and/or priority/time-sensitivity of the relevant
data, any or all of a series of evaluations can be performed
to categorize the traffic and/or to formulate a policy for
delivery and/or powering on the mobile device radio.

For example, using the identified application information,
in process 1512, it is determined whether the application is
in an active state interacting with a user on a mobile device.
In process 1514, it is determined if the application is running
in the foreground on the mobile device.

If the answer is ‘Yes’ to any number of the test of
processes 1512 or 1514, the system or server can then
determine that the new or changed data is to be sent to the
mobile device in step 1526, and sent without delay. Alter-
natively, the process can continue at flow ‘C’ where the
timing, along with other transmission parameters such as
network configuration, can be selected, as further illustrated
in the example of FIG. 31. If the answer is ‘No’ to the tests
0t 1512 or 1514, the other test can be performed in any order.
As long as one of the tests 1512 or 1514 is “Yes,’ then the
system or server having the data can proceed to step 1526
and/or flow ‘C.

If the answer is ‘No’ to the tests 1512 and 1514 based on
the application or application characteristics, then the pro-
cess can proceed to step 1524, where the sending of the new
or changed data is suppressed, at least on a temporary basis.
The process can continue in flow ‘A’ for example steps for
further determining the timing of when to send the data to
optimize network use and/or device power consumption, as
further described in the example of flow chart in FIG. 29.

Similarly, in process 1516, it is determined whether the
application is running in the background. If so, the process
can proceed to step 1524 where the sending of the new or
changed data is suppressed. However, even if the application

20

25

30

40

45

50

55

68

is in the background state, any of the remaining tests can be
performed. For example, even if an application is in the
background state, new or changed data may still be sent if
of a high priority or is time critical.

Using the priority or time sensitivity information, in
process 1518, it is determined whether the data is of high
priority 1518. In process 1520, it is determined whether the
data is time critical. In process 1522, it is determined
whether a user is waiting for a response that would be
provided in the available data.

If the answer is ‘Yes’ to any number of the test of
processes 1518, 1520, or 1522, the system or server can then
determine that the new or changed data is to be sent to the
mobile device in step 1526, and sent without delay. Alter-
natively, the process can continue at flow ‘C’ where the
timing, along with other transmission parameters such as a
network configuration, can be selected, as further illustrated
in the example of FIG. 31. If the answer is ‘No’ to any of
these tests, the other test can be performed in any order. As
long as one of the tests 1518, 1520, or 1522 is ‘Yes,” then the
system or server having the data can proceed to step 1526
and/or flow ‘C.

If the answer is ‘No’ to one or more of the tests 1518,
1520, or 1522, then the process can proceed to step 1524,
where the sending of the new or changed data is suppressed,
at least on a temporary basis. The process can continue in
flow ‘A’ for example steps for further determining the timing
of when to send the data to optimize network use and/or
device power consumption. The process can continue to step
1524 with or without the other tests being performed if one
of the tests yields a ‘No’ response.

The determined application category in step 1504 can be
used in lieu of or in conjunction with the determined data
categories in step 1510. For example, the new or changed
data that is of a high priority or is time critical can be sent
at step 1526 even if the application in the foreground state
but not actively interacting with the user on the mobile
device or if the application is not in the foreground, or in the
background.

Similarly, even if the user is not waiting for a response
which would be provided in the new or change data (in step
1522), the data can be sent to the mobile device 1526 if the
application is in the foreground, or if the data is of high
priority or contains time critical content.

In general, the suppression can be performed at the
content source (e.g., originating server/content host of the
new or changed data), or at a proxy server. For example, the
proxy server may be remote from the recipient mobile
device (e.g., able to wirelessly connect to the receiving
mobile device). The proxy server may also be remote from
the originating server/content host. Specifically, the logic
and intelligence in determining whether the data is to be sent
or suppressed can exist on the same server or be the same
entity as the originator of the data to be sent or partially or
wholly remote from it (e.g., the proxy is able to communi-
cate with the content originating server).

In one embodiment, the waiting to transfer the data is
managed by a local proxy on the mobile device which is able
to wirelessly communicate with a recipient server (e.g., the
host server for the mobile application or client). The local
proxy on the mobile device can control the radio use on the
mobile device for transfer of the data when the time period
has elapsed, or when additional data to be sent is detected.

FIG. 16A depicts a flow chart illustrating example pro-
cesses for handling traffic which is to be suppressed at least
temporarily determined from application/traffic categoriza-
tion.

US 9,432,486 B2

69

For example, in process 1602, a time period is elapsed
before the new or change data is transmitted in step 1606.
This can be performed if the data is of low priority or is not
time critical, or otherwise determined to be suppressed for
sending (e.g., as determined in the flow chart of FIG. 15).
The time period can be set by the application, the user, a
third party, and/or take upon a default value. The time period
may also be adapted over time for specific types of appli-
cations or real-time network operating conditions. If the new
or changed data to be sent is originating from a mobile
device, the waiting to transfer of the data until a time period
has elapsed can be managed by a local proxy on the mobile
device, which can communicate with the host server. The
local proxy can also enable or allow the use radio use on the
mobile device for transfer of the data when the time period
has elapsed.

In some instances, the new or changed data is transmitted
in 1606 when there is additional data to be sent, in process
1604. If the new or changed data to be sent is originating
from a mobile device, the waiting to transfer of the data until
there is additional data to be sent, can be managed by a local
proxy on the mobile device, which can communicate with
the host server. The local proxy can also enable or allow the
use radio use on the mobile device for transfer of the data
when there is additional data to be sent, such that device
resources can be conserved. Note that the additional data
may originate from the same mobile application/client or a
different application/client. The additional data may include
content of higher priority or is time critical. The additional
data may also be of same or lower priority. In some
instances, a certain number of non priority, or non time-
sensitive events may trigger a send event.

If the new or changed data to be sent is originating from
a server (proxy server or host server of the content), the
waiting to transfer of the data until a time period has elapsed
or waiting for additional data to be sent, can be managed by
the proxy server which can wirelessly communicate with the
mobile device. In general, the proxy server waits until
additional data is available for the same mobile device
before sending the data together in a single transaction to
minimize the number of power-ons of device battery and to
optimize network use.

FIG. 16B depicts a flow chart illustrating an example
process for selection of a network configuration for use in
sending traffic based on application and/or traffic (data)
categorization.

In process 1608, an activity state of an application on the
mobile device is detected for which traffic is directed to or
originated from is detected. In parallel or in lieu of activity
state, a time criticality of data contained in the traffic to be
sent between the mobile device and the host server can be
determined, in process 1610. The activity state can be
determined in part or in while, by whether the application is
in a foreground or background state on the mobile device.
The activity state can also be determined by whether a user
is interacting with the application.

Using activity state and/or data characteristics, when it
has determined from that the data is to be sent to the mobile
device in step 1612 of FIG. 15, the process can continue to
step 3006 for network configuration selection.

For example, in process 1614, a generation of wireless
standard is selected. The generation of wireless standard
which can be selected includes 2G or 2.5G, 3G, 3.5G, 3G+,
3GPP, LTE, or 4G, or any other future generations. For
example, slower or older generation of wireless standards
can be specified for less critical transactions or traffic
containing less critical data. For example, older standards

10

20

25

30

40

45

50

55

60

65

70

such as 2G, 2.5G, or 3G can be selected for routing traffic
when one or more of the following is detected, the appli-
cation is not interacting with the user, the application is
running in the background on the mobile device, or the data
contained in the traffic is not time critical. Newer genera-
tions such as can be specified for higher priority traffic or
transactions. For example, newer generations such as 3G,
LTE, or 4G can be specified for traffic when the activity state
is in interaction with a user or in a foreground on the mobile
device.

In process 1616, the access channel type can be selected.
For example, forward access channel (FACH) or the dedi-
cated channel (DCH) can be specified. In process 1618, a
network configuration is selected based on data rate or data
rate capabilities. For example, a network configuration with
a slower data rate can be specified for traffic when one or
more of the following is detected, the application is not
interacting with the user, the application is running in the
background on the mobile device, or the data contained in
the traffic is not time critical

In process 1620, a network configuration is selected by
specifying access points. Any or all of the steps 1614, 1616,
1618, and 1620 can be performed or in any combination in
specifying network configurations.

FIG. 16C depicts a flow chart illustrating an example
process for implementing network access and content deliv-
ery policies based on application and/or traffic (data) cat-
egorization.

In process 1634, an activity state of an application on a
mobile device to which traffic is originated from or directed
to is detected. For example, the activity state can be deter-
mined by whether the application is in a foreground or
background state on the mobile device. The activity state can
also be determined by whether a user is expecting data
contained in the traffic directed to the mobile device.

In process 1636, a time criticality of data contained in the
traffic to be sent between the mobile device and the host
server is detected. For example, when the data is not time
critical, the timing with which to allow the traffic to pass
through can be set based on when additional data needs to
be sent. Therefore, the traffic can be batched with the other
data so as to conserve network and/or device resources.

The application state and/or data characteristics can be
used for application categorization and/or data categoriza-
tion to determine whether the traffic resulting therefrom is to
be sent to the mobile device or suppressed at least on a
temporary basis before sending, as illustrated in the flow
chart shown in the example of FIG. 15.

Continuing at flow C after a determination has been made
to send the traffic, the parameters relating to how and when
the traffic is to be sent can be determined. For example, in
process 1638, a timing with which to allow the traffic to pass
through, is determined based on the activity state or the time
criticality.

In process 1640, radio use on the mobile device is
controlled based on the timing with which the traffic is
allowed to pass through. For example, for traffic initiated
from the mobile device, a local proxy can residing on the
mobile device can control whether the radio is to be turned
on for a transaction, and if so, when it is to be turned on,
based on transaction characteristics determined from appli-
cation state, or data priority/time-sensitivity.

In process 1642, a network configuration in the wireless
network is selected for use in passing traffic to and/or from
the mobile device. For example, a higher capacity or data
rate network (e.g., 3G, 3G+, 3.5G, LTE, or 4G networks) can
be selected for passing through traffic when the application

US 9,432,486 B2

71

is active or when the data contained in the traffic is time
critical or is otherwise of a higher priority/importance.

FIG. 17 depicts a flow chart illustrating an example
process for network selection based on mobile user activity
or user expectations.

In process 1702, the backlight status of a mobile device is
detected. The backlight status can be used to determine or
infer information regarding user activity and/or user expec-
tations. For example, in process 1704, user interaction with
an application on a mobile device is detected and/or in
process 1706, it is determined that a user is expecting data
contained in traffic directed to the mobile device, if the
backlight is on.

The user interaction 1704 and/or user expectation 1706
can be determined or inferred via other direct or indirect
cues. For example, device motion sensor, ambient light, data
activity, detection of radio activity and patterns, call pro-
cessing, etc. can be used alone or in combination to make an
assessment regarding user activity, interaction, or expecta-
tions.

In process 1708, an activity state of an application on the
mobile device for which traffic is originated from or directed
to, is determined. In one embodiment, the activity state of
the application is determined by user interaction with the
application on the mobile device and/or by whether a user is
expecting data contained in the traffic directed to the mobile
device.

In process 1710, 3G, 4G, or LTE network is selected for
use in sending traffic between a mobile device and a host
server in the wireless network. Other network configurations
or technologies can be selected as well, including but not
limited to 2.5G GSM/GPRS networks, EDGE/EGPRS,
3.5G, 3G+, turbo 3G, HSDPA, etc. For example, a higher
bandwidth or higher capacity network can be selected when
user interaction is detected with an application requesting to
access the network. Similarly, if it can be determined or
inferred with some certainty that the user may be expecting
data contained in traffic requesting network access, a higher
capacity or higher data rate network may be selected as well.

The activity state can also be determined by whether data
contained in the traffic directed to the mobile device
responds to foreground activities in the application. For
applications which are in the foreground, a higher capacity
(e.g., 3.5G, 4G, or LTE) network may be selected for use in
carrying out the transaction.

The activity state can be determined via device param-
eters such as the backlight status of the mobile device or any
other software or hardware based device sensors including
but not limited to, resistive sensors, capacitive sensors, light
detectors, motion sensors, proximity sensors, touch screen
sensors, etc. The network configuration which is selected for
use can be further based on a time criticality and/or priority
of data contained in the traffic to be sent between the mobile
device and the host server.

FIG. 18 depicts a data timing diagram 1800 showing an
example of detection of periodic request which may be
suitable for caching.

In the example shown, a first request from a client/
application on a mobile device is detected at time 1:00 (t1).
At this time, a cache entry may be created in step 1802. At
time 2:00 (12), the second request is detected from the same
client/application, and the cache entry that was created can
now be updated with the detected interval of 1 hour between
time t2 and t1 at step 1804. The third request from the same
client is now detected at time t3=3:00, and it can now be
determined that a periodic request is detected in step 1806.

25

30

40

45

50

55

72

The local proxy can now cache the response and send a start
poll request specifying the interval (e.g., 1 hour in this case)
to the proxy server.

The timing diagram further illustrates the timing window
between 2:54 and 3:06, which indicates the boundaries of a
window within which periodicity would be determined if the
third request is received within this time frame 1810. The
timing window 1808 between 2:54 and 3:06 corresponds to
20% of the previous interval and is the example tolerance
shown. Other tolerances may be used, and can be deter-
mined dynamically or on a case by case (application by
application) basis.

FIG. 19 depicts a data timing diagram 1900 showing an
example of detection of change in request intervals and
updating of server polling rate in response thereto.

At step 1902, the proxy determines that a periodic request
is detected, the local proxy caches the response and sets the
polling request to the proxy server, and the interval is set to
1 hour at the 3rd request, for example. At time t4=3:55, the
request is detected 55 minutes later, rather than 1 hour. The
interval of 55 minutes still fits in to the window 1904 given
a tolerance of 20%. However, at step 1906, the 5th request
is received at time t5=4:50, which no longer fits within the
tolerance window set determined from the interval between
the 1st and second, and second and third requests of 1 hour.
The local proxy now retrieves the resource or response from
the proxy server, and refreshes the local cache (e.g., cache
entry not used to serve the 5th request). The local proxy also
resends a start poll request to the proxy server with an
updated interval (e.g., 55 minutes in the example) and the
window defined by the tolerance, set by example to 20%,
now becomes 11 minutes, rather than 12 minutes.

Note that in general, the local proxy notifies the proxy
server with an updated polling interval when an interval
changes is detected and/or when a new rate has been
determined. This is performed, however, typically only for
background application requests or automatic/programmatic
refreshes (e.g., requests with no user interaction involved).
In general, if the user is interacting with the application in
the foreground and causing out of period requests to be
detected, the rate of polling or polling interval specified to
the proxy server is typically not update, as illustrated in FI1G.
20. FIG. 20 depicts a data timing diagram 2000 showing an
example of serving foreground requests with cached entries.

For example, between the times of t=3:00 and 3:30, the
local proxy detects 1st and 2nd foreground requests at
t=3:10 and t=3:20. These foreground requests are outside of
the periodicity detected for background application or auto-
matic application requests. The response data retrieved for
the foreground request can be cached and updated, however,
the request interval for foreground requests are not sent to
the server in process 2008.

As shown, the next periodic request detected from the
application (e.g., a background request, programmatic/auto-
matic refresh) at t=4:00, the response is served from the
cache, as is the request at t=5:00.

FIG. 21 depicts a data timing diagram 2100 showing an
example of a non-optimal effect of cache invalidation occur-
ring after outdated content has been served once again to a
requesting application.

Since the interval of proxy server polls is set to approxi-
mately the same interval at which the application (e.g.,
mobile application) is sending requests, it is likely the case
that the proxy server typically detects changed content (e.g.,
at t=5:02) after the cached entry (now outdated) has already
been served for a request (e.g., to the 5th request at t=5:00).
In the example shown, the resource updates or changes at

US 9,432,486 B2

73

t=4:20 and the previous server poll which occurs at t=4:02
was not able to capture this change until the next poll at 5:02
and sends a cache invalidation to the local proxy at 2110.
Therefore, the local cache does not invalidate the cache at
some time after the 5th request at time t=5:00 has already
been served with the old content. The fresh content is now
not provided to the requesting application until the 6th
request at t=6:00, 1 period later at process 2106.

To optimize caching performance and to resolve this
issue, the local proxy can adjust time setup by specifying an
initial time of request, in addition to the polling interval to
the proxy server. The initial time of request here is set to
some time before (e.g., a few minutes) the request actually
occurred such that the proxy server polls occur slightly
before actual future application requests. This way, the
proxy can pick up any changes in responses in time to be
served to the subsequent application request.

FIG. 22 depicts a data timing diagram 2200 showing
cache management and response taking into account the
time-to-live (TTL) set for cache entries.

In one embodiment, cached response data in the local
cache specifies the amount of time cache entries can be
stored in the local cache until it is deleted or removed.

The time when a response data in a given cache entry is
to be removed can be determined using the formula:
<response data_cache time>+<ITL>, as shown at t=3:00,
the response data is automatically removed after the TTL has
elapsed due to the caching at step 2212 (e.g., in this example,
24 hours after the caching at step 2212). In general the time
to live (TTL) applies to the entire cache entry (e.g., includ-
ing both the response data and any metadata, which includes
information regarding periodicity and information used to
compute periodicity). In one embodiment, the cached
response data TTL is set to 24 hours by default or some other
value (e.g., 6 hours, 12 hours, 48 hours, etc.). The TTL may
also be dynamically adjustable or reconfigured by the
admin/user and/or different on a case-by-case, device, appli-
cation, network provider, network conditions, operator, and/
or user-specific basis.

FIG. 23 depicts a flow chart illustrating an example
process for enhancing resource management in a wireless
network through selective data compression to reduce
mobile data traffic and signaling traffic.

In process 2302, an uncompressed data chunk in a data
stream to be transmitted over the wireless network to is
compressed to generate a compressed data chunk. The data
stream can run above a transport layer and below a session
layer. In process 2304, size of the uncompressed data chunk
is compared with the compressed data chunk. In process
23006, it is determined which of the uncompressed data
chunk and the compressed data chunk is smaller in size.

In process 2308, an optimized data stream comprising of
the uncompressed data chunk or the compressed data chunk
is transmitted over the wireless network., depending on
which is smaller in size.

Inprocess 2310, a header is included in the optimized data
stream to indicate which of uncompressed data chunk and
the compressed data chunk is transmitted. The header can be
used such that the compression dictionary need not be sent
with each data chunk in the optimized data stream. In
process 2312, a compression dictionary is updated if the
compressed data chunk is transmitted in the optimized data
stream. In one embodiment, the compression dictionary is
updated when the compressed data chunk is sent to maintain
synchronization across compressed data chunks and uncom-
pressed data chunks sent between the proxy server and the
mobile device.

20

25

40

45

55

74

In general, a compression dictionary is not transmitted or
updated if the uncompressed data chunk is transmitted in the
optimized data stream to avoid increasing overhead. In
process 2314, the compression dictionary is applied when
the compressed data chunk is transmitted to decode the
compressed data chunk, for example, by the receiving end
which may be a mobile device (e.g., the local proxy) or the
remote proxy server. The receiver can use the compression
dictionary to decode the at least partially compressed data
stream and the header to identify portions of the received
data stream which is at least partially compressed data
stream to which to apply the compression dictionary.

In one embodiment, the data stream is to be transmitted in
a distributed traffic management system having a local proxy
on a mobile device and a proxy server remote from the
mobile device where, the proxy server is able to establish
wireless connectivity to the mobile device. For example, the
data stream can be sent from the proxy server to the local
proxy of the mobile device and, the compression can be
performed by the proxy server. The data stream includes
cache-related content or information. The data stream can
include content or data from a content source or application
server directed to the mobile device. In one embodiment, the
proxy server monitors the content server for new or changed
data and the data stream can include a cache invalidate
message. The data stream includes state information of
content cached on the proxy server or on the local proxy
and/or cached content from a content source or application
server directed to the mobile device.

In one embodiment, the data stream is sent from the local
proxy of the mobile device to the proxy server and the
compression can be performed by the local proxy. In this
case, the data stream includes cache-setup information
including a polling schedule of one or more content sources
or application servers. The data stream can also include
mobile data traffic and/or signaling data.

FIG. 24 shows a diagrammatic representation of a
machine in the example form of a computer system within
which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed.

In alternative embodiments, the machine operates as a
standalone device or may be connected (e.g., networked) to
other machines. In a networked deployment, the machine
may operate in the capacity of a server or a client machine
in a client-server network environment, or as a peer machine
in a peer-to-peer (or distributed) network environment.

The machine may be a server computer, a client computer,
apersonal computer (PC), a user device, a tablet PC, a laptop
computer, a set-top box (STB), a personal digital assistant
(PDA), a cellular telephone, an iPhone, an iPad, a Black-
berry, a processor, a telephone, a web appliance, a network
router, switch or bridge, a console, a hand-held console, a
(hand-held) gaming device, a music player, any portable,
mobile, hand-held device, or any machine capable of execut-
ing a set of instructions (sequential or otherwise) that specify
actions to be taken by that machine.

While the machine-readable medium or machine-readable
storage medium is shown in an exemplary embodiment to be
a single medium, the term “machine-readable medium” and
“machine-readable storage medium” should be taken to
include a single medium or multiple media (e.g., a central-
ized or distributed database and/or associated caches and
servers) that store the one or more sets of instructions. The
term “machine-readable medium” and “machine-readable
storage medium” shall also be taken to include any medium
that is capable of storing, encoding or carrying a set of

US 9,432,486 B2

75

instructions for execution by the machine and that cause the
machine to perform any one or more of the methodologies
of the presently disclosed technique and innovation.

In general, the routines executed to implement the
embodiments of the disclosure may be implemented as part
of an operating system or a specific application, component,
program, object, module or sequence of instructions referred
to as “computer programs.” The computer programs typi-
cally comprise one or more instructions set at various times
in various memory and storage devices in a computer that,
when read and executed by one or more processing units or
processors in a computer, cause the computer to perform
operations to execute elements involving the various aspects
of the disclosure.

Moreover, while embodiments have been described in the
context of fully functioning computers and computer sys-
tems, those skilled in the art will appreciate that the various
embodiments are capable of being distributed as a program
product in a variety of forms, and that the disclosure applies
equally regardless of the particular type of machine or
computer-readable media used to actually effect the distri-
bution.

Further examples of machine-readable storage media,
machine-readable media, or computer-readable (storage)
media include but are not limited to recordable type media
such as volatile and non-volatile memory devices, floppy
and other removable disks, hard disk drives, optical disks
(e.g., Compact Disk Read-Only Memory (CD ROMS),
Digital Versatile Disks, (DVDs), etc.), among others, and
transmission type media such as digital and analog commu-
nication links.

FIG. 25 depicts a diagram showing one example process
for implementing a hybrid IP and SMS power saving mode
on a mobile device 2550 using a distributed proxy and cache
system (e.g., such as the distributed system shown in the
example of FIG. 1B).

In step 2502, the local proxy (e.g., proxy 175 in the
example of FIG. 1B) monitors the device for user activity.
When the user is determined to be active, server push is
active. In this way, always-on-push IP connection can be
maintained and, if available, SMS triggers can be immedi-
ately sent to the mobile device 2550 as it becomes available.

In process 2504, after the user has been detected to be
inactive or idle over a period of time (e.g., the example is
shown for a period of inactivity of 20 minutes), the local
proxy can adjust the device to go into the power saving
mode. In the power saving mode, when the local proxy
receives a message or a correspondence from a remote proxy
(e.g., the server proxy 135 in the example of FIG. 1B) on the
server-side of the distributed proxy and cache system, the
local proxy can respond with a call indicating that the device
2550 is currently in power save mode (e.g., via a power save
remote procedure call). In some instances, the local proxy
can take the opportunity to notify multiple accounts or
providers (e.g., 2510A, and 2510B) of the current power
save status (e.g., timed to use the same radio power-on
event).

In one embodiment, the response from the local proxy can
include a time (e.g., the power save period) indicating to the
remote proxy (e.g., server proxy 135) and/or the application
server/providers 2510A/B when the device 2550 is next able
to receive changes or additional data. A default power
savings period can be set by the local proxy.

In one embodiment, if new, changed, or different data or
event is received before the end of any one power saving
period, then the wait period communicated to the servers
2510A/B can be the existing period, rather than an incre-

10

15

20

25

30

35

40

45

50

55

60

65

76

mented time period. In response, the remote proxy server,
upon receipt of power save notification from the device
2550, can stop sending changes (data or SMSs) for the
period of time requested (the wait period). At the end of the
wait period, any notifications received can be acted upon; for
example, changes sent to the device 2550 as a single batched
event or as individual events. If no notifications come in,
then push can be resumed with the data or an SMS being sent
to the device 2550. The proxy server can time the poll or
data collect event to optimize batch sending content to the
mobile device 2550 to increase the chance that the client will
receive data at the next radio power on event.

Note that the wait period can be updated in operation in
real time to accommodate operating conditions. For
example, the local proxy can adjust the wait period on the fly
to accommodate the different delays that occur in the sys-
tem.

Detection of user activity in step 2508 at the device 2550
causes the power save mode to be exited. When the device
2550 exits power save mode, it can begin to receive any
changes associated with any pending notifications. If a
power saving period has expired, then no power save cancel
call may be needed as the proxy server will already be in
traditional push operation mode.

In one embodiment, power save mode is not applied when
the device 2550 is plugged into a charger. This setting can
be reconfigured or adjusted by the user or another party. In
general, the power save mode can be turned on and off, for
example, by the user via a user interface on device 2550. In
general, timing of power events to receive data can be
synchronized with any power save calls to optimize radio
use.

FIG. 26 depicts an interaction diagram showing cache
management by a distributed proxy system 2660 of content
delivered to an application (e.g., mobile application) 2655
over a long-held request while ensuring freshness of content
delivered.

The diagram illustrates an example process for how
cached responses received in long-held requests (e.g., long-
held HTTP request, long polls, or HTTP streaming) are
provided to the requesting application 2655 and manage-
ment of expired/invalid/non-relevant cache entries. A long-
held request can be any request for a persistent connection
that is held between the device and the server until a
response is available at the server to be sent (or pushed) to
the device. The long-held request or long-held HTTP request
can allow the device/server interaction to simulate content
push over the persistent connection (e.g., COMET style
push), for example, over a persisted connection over HTTP.

In step 2602, the application 2655 sends a request which
is detected and intercepted by the local proxy 2665 on the
mobile device 2650 on the client/device-side of the proxy
system 2660. Note that the request-response sequence 2602,
2604, 2606, and 2608 shown occurs after a long poll hunting
period which may sometimes be performed by the applica-
tion (e.g., mobile application) sending long poll requests.
The long poll hunting period may or may not be performed,
but when performed, it allows the requesting application
2655 to find the longest amount of time it can hold a request
with the end server/provider 2695 open before the connec-
tion times out (e.g., due to network reason, such as socket
closures).

FIG. 27 depicts a timing diagram showing hunting mode
behavior 2705 in a long poll request and a timing diagram
showing timing characteristics when the long poll has settled
2710.

US 9,432,486 B2

77

In hunting mode 2705, the request times are held for an
increasing amount of time (180, 360 . . . 1024 seconds) until
a request times out without receiving a response from the
server (as shown in 2702, 2704, 2706, and 2708). After this
time is detected, the request times are now held at some time
less than the time it took for a time out (e.g., now 500
seconds) and used to send future long poll requests. The
diagram 2710 shows the timing characteristics of request/
response pairs after the long poll hunting period has settled.
These characteristics can be detected and identified in opera-
tion by the local proxy and/or the remote proxy for handling
during caching. As previously described, the distributed
caching system can either begin caching (optionally) while
the application is still in long poll hunting mode or begin
caching after the hunting period 2705 has completed and the
application is in settled mode as in 2710. In general, if a
decrease in time interval is detected, the response is not
cached until the local or remote proxy can verify that a
subsequent received response meets cacheability conditions.

In general, long poll hunting may or may not be per-
formed by mobile apps or clients but the distributed system
includes mechanisms to detect long poll hunting activity for
application long polls and can simply ignore the long poll
hunting requests and begin caching after the hunting period
has elapsed and the long polls have settled at some constant
or near constant interval value or apply logic to begin
caching during the hunting period, thus enabling accelerated
caching to enhance performance and improve user experi-
ence.

In process 2702, a decision is made to begin to cache
content received from the host server. The decision can be
made through the example processes shown in the example
of FIG. 9 which depicts a flow chart illustrating example
processes for determining whether to cache content from a
particular host server (content source) by determining the
frequency of polling requests made to the host server in step
2702 and/or by determining the frequency of content change
at the host server in step 2704 The two steps can be used in
conjunction or independently of one another in deciding
whether content from the host server is to be cached, in step
2706

In process 2704, content from a content server is stored as
cached elements in a local cache on the mobile device. In
process 2706, a polling request to contact the content server
is received by the distributed caching system. In process
2708, if it is determined that a radio of the mobile device is
not activated and in process 2710, the cached elements are
retrieved from the local cache to respond to the polling
request without activating the radio even when a cache
defeating mechanism is employed.

The cache defeat mechanism, or identifiers used intended
to defeat cache addressed by such identifiers, can be
employed by the content server (the server to which the
polling requests using the identifiers are directed). In gen-
eral, the cache defeating mechanism or identifiers intended
for cache defeat can be detected from a syntax or pattern of
a resource identifier included in the polling request identi-
fying the content server.

For example, the resource identifier can include a URI or
URL and the URI/URL is normalized by performing one or
more of the following steps: converting the URI scheme and
host to lower-case, capitalizing letters in percent-encoded
escape sequences, removing a default port, or removing
duplicate slashes. In addition, the identifier normalization
process for an identifier employing cache defeat removes
any portion of the identifier which is intended to defeat

10

15

20

25

30

35

40

45

50

55

60

65

78

cache (e.g., typically a changing parameter between requests
detectable by the format, pattern, or syntax of the param-
eter).

Note that the detection of cache defeat mechanisms or
identifiers intended to defeat cache need not be determined
with 100% certainty. Identifiers with certain characteristics
(e.g., having parameters matching specific formats) which
can in addition to be determined to be employing cache
defeat may simply be treated as cache defeating or intended
for defeating cache for the purposes of caching content over
a wireless network; for example these may be managed in a
distributed fashion.

FIG. 28 depicts a flow diagram 2800 illustrating an
example process for using request intervals to determine and
to set a polling interval or rate at which a proxy server is to
monitor an application server/content host on behalf of the
mobile device.

The flow diagram 2800 refers to various timing param-
eters of request/response sequences, shown diagrammati-
cally in FIG. 30A-B. The timing parameters ‘IT,” ‘RI,” ‘D,’
‘RT” are defined as follows and illustrated in FIG. 30A-B.

1. RI-—Request interval—Time between “Request Sent
0” and “Request Sent 1.”

2. D—Delay—Time between ‘Request sent” and “First
bytes of response (HEADER) arrived.”

3. IT—Idle time—Time between ‘Whole Response con-
tent received 0’ and ‘Request Sent 1°.

4. RT—Response time—Time between “First bytes of
response (HEADER) arrived.” and ‘Whole Response con-
tent received.”

When the local proxy sets up a poll with the proxy server,
the polling interval or rate can be specified via timing
parameters RL IT, D, or any combination of the above. Some
examples of ways the local proxy can setup a poll with the
proxy includes: a) specifying IT only—which can be used in
case of stable IT intervals; b) specifying IT and D—this can
be used in the case of stable I'T and long D; ¢) RI only—in
the case of stable RI (e.g., detected linear pattern); and d) RI
and D—this may be used in the case of stable RI and long
D.

Each of the setups can be selected based on the criteria
shown in the flow diagram, starting at step 2802 where it is
determined whether IT for a request of a given client/
application (e.g., mobile application) is stable. If IT is not
stable, in process 2812, it is determined whether RI is
periodic and if not, no pattern has been detected yet in step
2820. RI is periodic, then the process continues to step 2822,
as detailed below.

IfIT is stable at 2802, it is determined whether ‘IT” is zero
in step 2804. If ‘IT" is not zero at step 2804, it is determined
whether ‘RI” is more stable than ‘IT” in step 2814. If not, the
process continues to 2806. If so, the process proceeds to
determine whether ‘D’ is stable or if long poll hunting
pattern is detected in step 2822. If not, then the poll is setup
for polling with ‘RI” in step 2826. If at step 2822 D is stable
and hunting pattern is detected, the process continues at step
2824 to determine whether ‘D’ is long, and if so, the poll is
setup with both ‘RI” and “D." If not, the poll is just set up
with ‘RI in process 2826.

If <IT” is detected to be zero at 2804, in step 2806 it is then
determined whether ‘D’ is stable or if a hunting pattern (for
a long poll) is detected. If so, in step 2808 it is determined
whether ‘D’ is long, and if so, in step 2810 the intervals of
‘D’ and ‘IT” can be used for polling. As such the determined
‘D’ and/or ‘1T’ can be specified to the proxy server, or other
entity monitoring the content source on behalf of the mobile
device or local proxy. If ‘D’ is determined to not be long in

US 9,432,486 B2

79

step 2808, the poll can be setup with just ‘IT” in step 2818.
However, if at 2806, ‘D” is not detected to be stable and a
hunting pattern is not detected, then no pattern has been
detected as yet, as in step 2816.

A ‘stable’ interval can generally be used to refer to some
level of repeatability or predictability in the interval within
some tolerable threshold between two or more requests. For
example, ‘stable’ could mean that two intervals are within
5%, 10%, 15%, or 20% of one another. In some instance, a
larger differential may also be allowed. The threshold used
to quality a ‘stable’ interval could be a static value or it could
be a dynamic value which changes with real-time operating
conditions, and/or a value which is varying based on device,
user, OS, application, network operator, ISP, and/or other
third party specifications, No stringent definition for ‘stable’
needs to be applied so long as the specified intervals used for
polling of the proxy server on behalf of the mobile device
does not significantly negatively impact the user’s percep-
tion of performance or user experience.

FIG. 29 depicts example timing diagrams 2900 showing
timing characteristics for various types of request-response
sequences.

In FIG. 29, 8 time line combinations are illustrated, each
containing 2 blocks of request-response sequences. In each
sequence, the dotted line indicates a response in a request-
response interval. Sequence 2902 is characterized by a short
‘D’, short ‘RT”, and long ‘IT’. Thus sequence 2902 may be
a typical poll. Sequence 2904 is characterized by a short ‘D’
a short ‘RT”, a short ‘IT” and is indicative of a high polling
rate. Sequence 2904 may also indicate that a user is actively
interacting with the application and/or actively refreshing
the application.

Sequence 2906 is characterized by a short ‘D’, a long
‘RT’ and short ‘IT,” which can indicate possible streaming.
Sequence 2908 is characterized by a short ‘D’; a long ‘RT,
and a long ‘IT” which can indicate polling of large content.
Sequence 2910 is characterized by a long ‘D,” a short ‘RT,”
and a long ‘IT, which may indicate a long poll with high
latency allowed on the application level.

Sequence 2912, which has a long ‘D’, a short ‘RT’, and
a short ‘I'T” may indicate a long poll. Sequence 2914, having
a long ‘D’, long ‘RT” and short ‘IT” can indicate streaming
or long poll of large content. Sequence 2916 has a long ‘D’
a ‘long ‘RT”, and long ‘IT” can be a combination of 2914 and
2910.

FIG. 30A depicts an example of a timing diagram 3000
showing timing characteristics for request and response
sequences.

The present technology includes a distributed caching
model which involves cooperation of the device-side proxy
and server-side. In order for it to work after caching a
response, the client-side component needs to notify the
server-side proxy and also provide a rate that a particular
resource (application server/content provider) must be
polled at (to verify validity of cached content). After receiv-
ing this notification, the server-side proxy can then monitor
the resource for changes (validating resource), and once a
change is detected, the server-side component can notify the
device-side component by sending an invalidation request.

The client-side component needs to provide a correct and
suitable polling interval to the server-side proxy (e.g., the
interval at which the server-side proxy is polling the
resource to monitor it) for optimal performance, since if the
polling interval is too low, the load is unnecessarily
increased on the server-side proxy. By increasing the polling
interval, the local proxy risks providing the expired/irrel-
evant information to the user at the user device.

10

15

20

25

30

35

40

45

50

55

60

65

80

As previously described, timing characteristics of request-
responses sequences between a requesting client/application
and content provider/application server can be used to
determine application behavior and/or to categorize request
type. Such information can be used to determine, identify,
estimate, or predict an application’s polling intervals such
that an optimal polling interval at which server-side proxy
needs to monitor the resource can be determined and pro-
vided to the server-side proxy.

The timing characteristics can include, for example,
response/delay time to receive a response after a request has
been sent and an idle time to send a subsequent request after
the response has been received. The relationships of the
various time intervals in a response-request sequence can be
seen in the timing diagram 3000.

Each request-response time sequence can be described
using all or some of the following events: 1) Start sending
request (1705); 2) Request sent; 3) Response start (1710); 4)
Response end (1720); and 5) Next request send (1715). The
‘Response Start’ 3010) indicates when the first bytes of
response (HEADER) arrived and the ‘Response end 3020’
indicates when all response content has been received.

Using these events, the device-side can calculate the
following intervals shown in 3000:

1. RI 3008—Request interval—Time between “Request
Sent 0” and “Request Sent 1.”

2. D 3004—Delay—Time between ‘Request sent’ and
“First bytes of response (HEADER) arrived.”

3. IT 3006—Idle time—Time between ‘Whole Response
content received 0” and ‘Request Sent 1”

4. RT 3012—Response time—Time between “First bytes
of response (HEADER) arrived.” and ‘Whole Response
content received”

The relationship of the timing characteristic in a request-
response sequence (RI=D+RT+IT) can be considered to
extract application behavior information for use in caching
content in a distributed fashion. Relative comparisons
between different intervals can also be used to characterize
the application and its requests.

In general, the device-side component of the distributed
proxy can keep track of individual timing intervals in a
request-response sequence and compare the values in a
relative (e.g., bigger or smaller than another interval) or
absolute manner (specific duration, long, short compared to
a dynamic or static threshold value, etc.). The device-side
component can track these interval values over time, check
for stable components and determine or identify tendencies
or patterns. For example, the device-side component can
detect increasing or decreasing ‘D’ 3004 in the case of long
poll hunting mode for long poll requests. FIG. 30B depicts
an example of a timing diagram 3050 showing timing
characteristics for request/response sequences characteristic
of a long poll. Note that timing diagram 3050 may not be
applicable to high latency long polls.

In one embodiment, a request can be detected, deter-
mined, or to be a long poll request based on a comparison
of the response/delay time (D 3054) relative to the idle time
(IT 3056) between request 0 3055 and response start time
3060. For example, the request can be detected to be a long
poll request when the idle time is short compared to the
response delay time (IT 3056<D 3054). The request can also
be determined to be a long poll when IT 3056 is zero or
substantially zero (~0).

In addition, the request can be determined or categorized
as a long poll request if the idle time (IT 3056) indicates an
immediate or near-immediate issuance of the subsequent
request after receipt of the response (e.g., a short IT 3056).

US 9,432,486 B2

81
In addition, a request can be determined to be a long poll if
RI 3058=D 3054+RT 3062+IT 3056~D 3054+RT 3062. In
one embodiment, the response time ‘RT” 3062 can be used
to determine bit rate (e.g., size in byte*8/time).

In general, different combinations of time intervals pro-
vide indications about polling pattern of the specific appli-
cation or request and can be used by the device-side com-
ponent to generate a polling interval for the server-side
component to use in monitoring the content source.

FIG. 31 depicts a diagram of an example of the compo-
nent API layer for the cache store.

One example of the cache store component API layer can
include the following entities: 1) Cache Manager 3112.
Client facing entry point to the cache management system.
This can allow registration of different caches for multiple
applications/clients, providing them to relevant applications/
clients when required. 2) ICache 3114. This entity represents
a cache store, i.e., a mechanism for maintaining a pool of
cache entries. Cache entries in the iCache can be queried,
edited, removed, and/or updated with new entries. 3)
ICacheListener 3104. This allows implementation of fea-
tures in application/clients to enable receipt of cache related
notifications. 4) CacheEvent 3102. This represents a cache
related event. 5) Iterator 3120. This provides a mechanism
for iterating on a collection of cache entries. 6) ICacheFilter
3106. This provides a mechanism for filtering cache entries.
7) UrlFilter 3108. This is a cache filter that allows perform-
ing cache lookups based on entry URIs. 8) IdentityFilter
3110. This is a cache filter that allows performing cache
lookups based on entry IDs. 9) ICacheEntry 3116. This
entity represents a single cache entry. Cache entry is iden-
tified either by ID or by URI; both generally must be unique
in scope of a single cache. 10) ICacheEntryData 3118. This
is a named data associated with some cache entry.

FIG. 32 depicts a diagram showing one example of the
data model for the cache store. Cache stores may be mobile
platform specific. In one embodiment, cache stores can
utilize hybrid storage, which can include the following
components: 1) SQL file database for persisting cache
entries, or 2) file system for persisting meta-data and binary
response data. This configuration can be used for mobile
platforms such as Android.

FIG. 33 depicts a conceptual diagram of one example of
the data model of a cache entry 3304 in the cache store 3302.
A given cache entry 3304 can be identified by an identifier
(e.g., URI). In general, cache entries include a response data
component (e.g., ResponseData field 2508) and any associ-
ated metadata (e.g., Metalnfo field 3306).

FIG. 34A-B depicts example request-response pairs
showing cacheable responses 3404 and 3454 addressed by
identifiers with changing parameters 3402 and 3452.

The request/response pairs shown in the examples of FIG.
34 A illustrate timing parameters 3402 used for cache defeat
since the responses 3404 received for each request is the
same even though the timing parameters 3402 change each
time. The resource identifier and the parameter 3402 can be
identified as cache defeating upon the second time the
‘response’ is detected to be the same, or the third time, or a
later subsequent time. The caching of the ‘response=x’ can
similarly begin the second detected same response, the third
detected same response, or a later subsequent detected same
response.

Similarly, the request response pairs shown in the
examples of FIG. 34B illustrate random parameters 3452
that are used for cache defeat since the responses 3454
received for each request is the same even though the
random parameters 3452 in the identifiers are varying each

10

15

20

25

30

35

40

45

50

55

60

65

82

time. The resource identifier and the parameter 3402 can be
identified as cache defeating upon the second time the
‘response’ is detected to be the same, or the third time, or a
later subsequent time. The caching of the ‘response=x’ can
similarly begin the second detected same response, the third
detected same response, or a later subsequent detected same
response.

Although two types of changing parameters are shown
(timing/date 3402 and random parameter 3452), other types
of changing parameters may be used for cache defeat and
can be similarly detected by the system.

Unless the context clearly requires otherwise, throughout
the description and the claims, the words “comprise,” “com-
prising,” and the like are to be construed in an inclusive
sense, as opposed to an exclusive or exhaustive sense; that
is to say, in the sense of “including, but not limited to.” As
used herein, the terms “connected,” “coupled,” or any vari-
ant thereof, means any connection or coupling, either direct
or indirect, between two or more elements; the coupling of
connection between the elements can be physical, logical, or
a combination thereof. Additionally, the words “herein,”
“above,” “below,” and words of similar import, when used
in this application, shall refer to this application as a whole
and not to any particular portions of this application. Where
the context permits, words in the above Detailed Description
using the singular or plural number may also include the
plural or singular number respectively. The word “or,” in
reference to a list of two or more items, covers all of the
following interpretations of the word: any of the items in the
list, all of the items in the list, and any combination of the
items in the list.

The above detailed description of embodiments of the
disclosure is not intended to be exhaustive or to limit the
teachings to the precise form disclosed above. While specific
embodiments of, and examples for, the disclosure are
described above for illustrative purposes, various equivalent
modifications are possible within the scope of the disclosure,
as those skilled in the relevant art will recognize. For
example, while processes or blocks are presented in a given
order, alternative embodiments may perform routines hav-
ing steps, or employ systems having blocks, in a different
order, and some processes or blocks may be deleted, moved,
added, subdivided, combined, and/or modified to provide
alternative or sub-combinations. Each of these processes or
blocks may be implemented in a variety of different ways.
Also, while processes or blocks are at times shown as being
performed in series, these processes or blocks may instead
be performed in parallel, or may be performed at different
times. Further any specific numbers noted herein are only
examples: alternative implementations may employ differ-
ing values or ranges.

The teachings of the disclosure provided herein can be
applied to other systems, not necessarily the system
described above. The elements and acts of the various
embodiments described above can be combined to provide
further embodiments.

Any patents and applications and other references noted
above, including any that may be listed in accompanying
filing papers, are incorporated herein by reference. Aspects
of'the disclosure can be modified, if necessary, to employ the
systems, functions, and concepts of the various references
described above to provide yet further embodiments of the
disclosure.

These and other changes can be made to the disclosure in
light of the above Detailed Description. While the above
description describes certain embodiments of the disclosure,
and describes the best mode contemplated, no matter how

US 9,432,486 B2

83

detailed the above appears in text, the teachings can be
practiced in many ways. Details of the system may vary
considerably in its implementation details, while still being
encompassed by the subject matter disclosed herein. As
noted above, particular terminology used when describing
certain features or aspects of the disclosure should not be
taken to imply that the terminology is being redefined herein
to be restricted to any specific characteristics, features, or
aspects of the disclosure with which that terminology is
associated. In general, the terms used in the following claims
should not be construed to limit the disclosure to the specific
embodiments disclosed in the specification, unless the above
Detailed Description section explicitly defines such terms.
Accordingly, the actual scope of the disclosure encompasses
not only the disclosed embodiments, but also all equivalent
ways of practicing or implementing the disclosure under the
claims.

While certain aspects of the disclosure are presented
below in certain claim forms, the inventors contemplate the
various aspects of the disclosure in any number of claim
forms. For example, while only one aspect of the disclosure
is recited as a means-plus-function claim under 35 U.S.C.
§112, 46, other aspects may likewise be embodied as a
means-plus-function claim, or in other forms, such as being
embodied in a computer-readable medium. (Any claims
intended to be treated under 35 U.S.C. §112, 46 will begin
with the words “means for.”) Accordingly, the applicant
reserves the right to add additional claims after filing the
application to pursue such additional claim forms for other
aspects of the disclosure

What is claimed is:

1. A method for enhancing resource management in a
wireless network through selective data compression and
messaging alignment to reduce mobile data traffic and
signaling traffic, the method, comprising:

compressing, using a compression dictionary, an uncom-

pressed data chunk in a data stream to be transmitted
over the wireless network to generate a compressed
data chunk;

comparing sizes of the uncompressed data chunk with the

compressed data chunk;

optimizing the data stream by batching multiple transac-

tions for transmission over the wireless network such
that a wireless connection need not be established in the
wireless network every time each of the multiple trans-
actions occurs;

wherein the data is individually batched for each of the

users;

15

20

25

30

35

40

45

84

optimizing the data stream by delaying transmission

thereof until detection of a trigger; and

transmitting the optimized data stream comprising of the

uncompressed data chunk or the compressed data
chunk over the wireless network, depending on which
is smaller in size,

wherein the compression dictionary is updated if the

compressed chunk is transmitted and wherein the com-
pression dictionary is not updated if the uncompressed
chunk is transmitted.

2. The method of claim 1, wherein a header is included in
the optimized data stream to indicate which of the uncom-
pressed data chunk and the compressed data chunk is
transmitted.

3. The method of claim 1, wherein, the data stream is to
be transmitted in a distributed traffic management system
having a local proxy on a mobile device and a proxy server
remote from the mobile device, wherein, the proxy server is
able to establish wireless connectivity to the mobile device.

4. The method of claim 1, wherein, the compression
dictionary is not transmitted if the uncompressed data chunk
is transmitted in the optimized data stream.

5. The method of claim 3, wherein the compression
dictionary is applied when the compressed data chunk is
transmitted to decode the compressed data chunk.

6. The method of claim 3, wherein, synchronization is
maintained across compressed data chunks and uncom-
pressed data chunks sent between the proxy server and the
mobile device.

7. The method of claim 1, wherein, the data stream runs
above a transport layer and below a session layer.

8. The method of claim 3, wherein, the data stream is sent
from the proxy server to the local proxy of the mobile
device; wherein, the compression is performed by the proxy
server.

9. The method of claim 8, wherein, the data stream
includes cache-related content or information.

10. The method of claim 3, wherein, the data stream is
sent from the local proxy of the mobile device to the proxy
server; wherein, the compression is performed by the local
Proxy.

11. The method of claim 1, wherein the trigger is a radio
up event on the mobile device.

12. The method of claim 1, wherein the trigger is receipt
of a high priority data.

#* #* #* #* #*

